Math 163 - Test 01

Monday September 17th 2012

Instructions Remember to show all your work so you can get partial credit. You shouldn't need a calculator on this test. Please leave answers in their exact form. Try not to overthink the problems too much.

1. (15 Points) Find the derivatives of the following functions
(a) $f(x)=\ln (x)$.
(b) $h(t)=e^{t+1}$.
(c) $g(x)=2^{x}$
2. (15 Points) Find the following integrals
(a) $\int_{1}^{x} \frac{1}{t} d t$
(b) $\int \frac{1}{1+4 x^{2}} d x$
(c) $\int \tan (\theta) d \theta$
3. (10 Points) Graph the following functions. Make sure to label key features.
(a) $f(x)=\ln (x)$.
(b) $f(x)=1+e^{x-2}$.
4. (10 Points) Find the following limits using L'hôpital's rule
(a) $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$
(b) $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}$
5. (15 points) Find the following limits. (You can just state the answer if you know it.)
(a) $\lim _{x \rightarrow \infty} e^{-x} \cos (x)$
(b) $\lim _{x \rightarrow \infty} \tan ^{-1}(x)$
(c) $\lim _{x \rightarrow \infty} \frac{2 e^{x}-e^{-x}}{e^{x}+e^{-x}}$
6. (15 Points) Find an inverse function for the following functions and state their domains.
(a) $f(x)=e^{x}$
(b) $h(x)=e^{2 x}+1$
(c) $g(x)=x^{2}+4 x+4$ when $x \leq-2$. (It might be helpful to graph this function)
7. (15 Points) Let $f^{-1}(t)$ be the inverse function of $f(s)=s+e^{s}$. Find the line tangent to the graph of $f^{-1}(t)$ at $t=1$. (Hint: don't try to compute the inverse directly like in problem 6)
8. (15 Points) Derive the formula for the derivative of $\sin ^{-1}(x)$ where the domain of $\sin (x)$ is taken to be $[-\pi / 2, \pi / 2]$.
