Math 163 — Test 01

Monday September 17th 2012

Instructions Remember to show all your work so you can get partial credit. You shouldn't need a calculator on this test. Please leave answers in their exact form. Try not to overthink the problems too much.

- 1. (15 Points) Find the derivatives of the following functions
 - (a) $f(x) = \ln(x)$.
 - (b) $h(t) = e^{t+1}$.
 - (c) $g(x) = 2^x$

a) of lu(x) = 1/x

b) defetti = etti

c) $\frac{d}{dx} \left[2^{x} \right] = \frac{d}{dx} \left[e^{\ln(2)x} \right] = \ln(2)e^{\ln(2)x}$

2. (15 Points) Find the following integrals

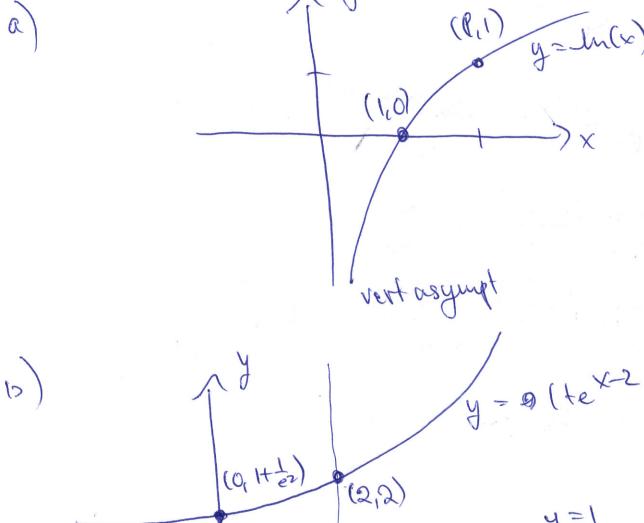
(a)
$$\int_1^x \frac{1}{t} dt$$

(b)
$$\int \frac{1}{1+4x^2} dx$$

(c)
$$\int \tan(\theta) d\theta$$

$$\int_{1}^{x} \frac{1}{t} dt = ln(x)$$

6)
$$\int \frac{1}{1+4x^2} dx = \int \frac{1}{1+(2x)^2} dx$$
, $\int \frac{1}{1+(2x)^2} dx$, $\int \frac{1}{1+(2x)^2} dx$

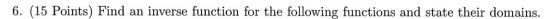

$$= \int \frac{1}{1+u^2} \frac{du}{2} = \int \frac{1}{2} \left[four'(u) \right] + C$$

c)
$$\int \frac{\sin(\theta)}{\cos(\theta)} d\theta = \int \frac{du}{u} = -\ln|u| + c$$

= $-\ln|\cos(\theta)| + c$

$$u = cos(0)$$

$$du = -sin(0)d0$$


- $3.\,$ (10 Points) Graph the following functions. Make sure to label key features.
 - (a) $f(x) = \ln(x)$.
 - (b) $f(x) = 1 + e^{x-2}$.

Horizontal
Asympt
as X->-b

- 4. (10 Points) Find the following limits using L'hôpital's rule
 - (a) $\lim_{x\to 0} \frac{\sin(x)}{x}$
 - (b) $\lim_{x\to\infty} \frac{\ln(x)}{x}$

(a) $\lim_{x\to 0} \frac{\sinh(x)}{x} = \frac{0}{0}$ L'H $\lim_{x\to 0} \frac{\sinh(x)}{x} = \lim_{x\to 0} \frac{\sinh(x)}{x} = 1$ (b) $\lim_{x\to 0} \frac{\ln(x)}{x} = \frac{\infty}{0}$ L'H $\lim_{x\to 0} \frac{\ln(x)}{x} = 0$.

(a)
$$f(x) = e^x$$

(b)
$$h(x) = e^{2x} + 1$$

(c)
$$g(x) = x^2 + 4x + 4$$
 when $x \le -2$. (It might be helpful to graph this function)

(c)
$$g(x) = x^2 + 4x + 4$$

= $(x+2)^2$

$$2(x+2)^{2}$$

5. (15 points) Find the following limits. (You can just state the answer if you know it.)

- (a) $\lim_{x\to\infty} e^{-x}\cos(x)$
- (b) $\lim_{x\to\infty} \tan^{-1}(x)$
- (c) $\lim_{x\to\infty} \frac{2e^x e^{-x}}{e^x + e^{-x}}$

(a) lim = x eos(x) = 0

(b) $\lim_{x \to \infty} \tan^{-1}(x) = \frac{\pi}{2}$

(c) lum $2e^{x}-e^{-x}$ 4x > 00 $e^{x}+e^{-x}=2$ 7. (15 Points) Let $f^{-1}(t)$ be the inverse function of $f(s) = s + e^s$. Find the line tangent to the graph of $f^{-1}(t)$ at t = 1. (Hint: don't try to compute the inverse directly like in problem 6)

Use the inverse function theorem

$$(f'')'(t) = f'(f'(t))$$

Calculate Point

Colculate Stope

Rovut-Slope Equal Lone;

8. (15 Points) Derive the formula for the derivative of $\sin^{-1}(x)$ where the domain of $\sin(x)$ is taken to be $[-\pi/2, \pi/2]$.

$$\frac{d}{dx} \left[sin'(x) \right] = \frac{1}{\sqrt{1-x^2}}$$