Math 163 — Test 02

Thursday, October 18th 2012

Instructions Remember to show all your work so you can get partial credit. You shouldn't need a calculator on this test but you can use one. Please leave answers in their exact form. Try not to overthink the problems too much.

- 1. (15 Points) Compute the following integrals
 - (a) $\int xe^x dx$.
 - (b) $\int x^2 \sin(x) dx$.
 - (c) $\int \ln(x) dx$

- $2. \ (10 \ {\rm Points})$ Compute the following indefinite integrals

 - (a) $\int \frac{1}{x^2 1} dx$
(b) $\int \frac{1}{x^3 + x} dx$

3. (15 Points) Estimate the definite integral using the trapezoidal rule with two intervals. The notation they used in the book and online for this is T_2 . It would be nice if you did this with a calculator but you don't need to.

$$\int_0^1 e^{x^2} dx.$$

- $4. \ (15 \ \mathrm{Points})$ Evaluate the following improper integrals

 - (a) $\int_0^\infty t e^{-t} dt$ (b) $\int_0^1 \frac{1}{\sqrt{x}} dx$ (c) $\int_{-\infty}^\infty \frac{dx}{1+x^2}.$

5. (15 Points) Solve the following initial value problem

$$\frac{dx}{dt} = x^2 t$$

$$x(0) = 1$$

6. (10 Point) Compute the following integral $\int e^x \sin(x) dx$.

7. (20 Points)

(a) (10 Points) Verify that $y(t) = \cos(t)$ is a solution of the differential equation

$$\frac{d^2y}{dt^2} = -y.$$

(b) (10 Points) Verify that $y(t) = e^{it}$ is a solution of the differential equation

$$\frac{d^2y}{dt^2} = -y.$$

Here, $i = \sqrt{-1}$ and it is the imaginary number which satisfies $i^2 = -1$. You treat it like a constant.

- 8. (For Respect/ If you want to see something cool)
 - (a) Find the constants λ such that functions of the form $y(t)=e^{\lambda t}$ give a solution to the differential equation

$$y'' = -y.$$

(b) It turns out that $\lambda = \pm i$ in the previous problem. It also turns out that every solution of the equation y'' = -y are of the form $y(t) = Ae^{it} + Be^{-it}$. But what the hell?! What about the solution $y(t) = \cos(t)$ that we did in the previous problem??

Here is the exercise you should do: Using Euler's Formula $e^{it} = \cos(t) + i\sin(t)$ find the constants A and B such that $\cos(t) = Ae^{it} + Be^{-it}$. (Hint: do the computation $e^{it} + e^{-it}$ then adjust it slightly)