Math 163 — Test 02

Thursday, October 18th 2012

Instructions Remember to show all your work so you can get partial credit. You shouldn't need a calculator on this test but you can use one. Please leave answers in their exact form. Try not to overthink the problems too much.

- 1. (15 Points) Compute the following integrals
 - (a) $\int xe^x dx$.
 - (b) $\int x^2 \sin(x) dx$.
 - (c) $\int \ln(x) dx$

a)
$$\int xe^{x}dx = uv - \int vdu = xe^{x} - \int e^{x}dx$$
 $u = x$, $du = dx$
 $dv = e^{x}dx$, $v = e^{x}$

b) $\int x^{2} \sin(x) dx = -x^{2} \cos(x) + \int \cos(x) \cdot 2x dx$
 $u = x^{2}$, $dv = \sin(x) dx$
 $du = x^{2}$, $dv = \sin(x) dx$
 $du = 2x dx$, $v = -\cos(x) dx$
 $du = 2x dx$, $v = -\cos(x) dx$
 $du = 2x dx$, $v = \cos(x) dx$
 $du = 2x dx$, $v = \cos(x) dx$
 $du = 2x dx$, $du = \cos(x) dx$
 $du = 2x dx$, $du = \cos(x) dx$
 $du = 2x dx$
 du

2. (10 Points) Compute the following indefinite integrals

(a)
$$\int \frac{1}{x^2-1} dx$$

(a)
$$\frac{1}{X^{2}-1} = \frac{A}{X-1} + \frac{B}{X+1}$$
 $\frac{1}{X-1} = \frac{A(X+1) + B(X-1)}{A(X+1)} = \frac{A}{X+1}$ $\frac{1}{X-1} = \frac{A}{X+1} + \frac{A}{X+1}$ $\frac{1}{X-1} = \frac{A}{X+1} + \frac{A}{X+1} = \frac{A$

 $\frac{x_3+x}{1} = \frac{x}{1} \cdot \frac{x_5+1}{1} = \frac{x_5+1}{1} \cdot \frac{x_5+1}{1} \cdot \frac{x_5}{1} \cdot \frac{x_5}{1}$

- 8. (For Respect/ If you want to see something cool)
 - (a) Find the constants λ such that functions of the form $y(t) = e^{\lambda t}$ give a solution to the differential equation

$$y'' = -y.$$

(b) It turns out that $\lambda = \pm i$ in the previous problem. It also turns out that every solution of the equation y'' = -y are of the form $y(t) = Ae^{it} + Be^{-it}$. But what the hell?! What about the solution $y(t) = \cos(t)$ that we did in the previous problem??

Here is the exercise you should do: Using Euler's Formula $e^{it} = \cos(t) + i\sin(t)$ find the constants A and B such that $\cos(t) = Ae^{it} + Be^{-it}$. (Hint: do the computation $e^{it} + e^{-it}$ then adjust it slightly)

a)
$$y(t) = 2e^{\lambda t}$$

$$\begin{cases} y'(t) = \lambda e^{\lambda t} \\ y''(t) = \lambda^2 e^{\lambda t} \end{cases}$$

$$= \begin{cases} y'' + y' = 0 \\ = y'' + y'' + y'' = 0 \\ = y'' + y'' + y'' = 0 \\ = y'' + y$$

$$Cos(t) = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$

check this

$$e^{it} + e^{-it} = e^{it} + e^{i(-t)}$$

= $(\cos(t) + i \sin(t))$
+ $(\cos(-t) + i \sin(-t))$

=) est te-it = 2008(t). 18

7. (20 Points)

(a) (10 Points) Verify that $y(t) = \cos(t)$ is a solution of the differential equation

$$\frac{d^2y}{dt^2} = -y.$$

(b) (10 Points) Verify that $y(t) = e^{it}$ is a solution of the differential equation

$$\frac{d^2y}{dt^2} = -y.$$

Here, $i = \sqrt{-1}$ and it is the imaginary number which satisfies $i^2 = -1$. You treat it like a constant.

a) y'(t) = -Sln(t)y''(t) = -cos(t).

 $\frac{d^2y}{dt^2} + y = -\cos(t) + \cos(t) = 0.$

b) $y(t) = e^{it}$ $y''(t) = -e^{it}$

det ty = -eit teit =0. v.

6. (10 Point) Compute the following integral $\int e^x \sin(x) dx$.

Jexshuk)dx

$$t = \frac{1}{2} \frac{1}$$

5. (15 Points) Solve the following initial value problem

$$\frac{dx}{dt} = x^{2}t,$$

$$x(0) = 1.$$

$$\frac{dx}{dt} = x^{2}t,$$

$$x(0) = 1.$$

$$\frac{dx}{x^{2}} = \int t dt$$

$$\frac{dx}{x^$$

4. (15 Points) Evaluate the following improper integrals

(a)
$$\int_0^\infty t e^{-t} dt$$

(b)
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$

(c)
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2}.$$

a)
$$\int_{0}^{\infty} te^{-t} dt = -te^{-t} \int_{0}^{\infty} te^{-t} dt$$
 $u = t$, $dv = e^{-t} dt = 0 + \int_{0}^{\infty} \frac{d}{dt} \left[-e^{-t} \right] dt$
 $du = dt$, $v = -e^{-t}$
 $= -e^{-t} \int_{0}^{\infty} e^{-t} dt$
 $= -e^{-t}$

3. (15 Points) Estimate the definite integral using the trapezoidal rule with two intervals. The notation they used in the book and online for this is T_2 . It would be nice if you did this with a calculator but you don't need to.

 $\int_0^1 e^{x^2} dx.$

$$T_2 = \left(\frac{f(0) + f(\frac{1}{2})}{2}\right)$$

$$= \left(\frac{1+e^{(1/2)^2}}{2}\right) \frac{1}{2} + \left(\frac{e^{(1/2)^2}+e}{2}\right)$$