Math 31B - Homework 07

Instructions Compute the power series at the indicated points.

1 Polynomials

1. $f(x)=1$ at $x_{0}=0$
2. $f(x)=1$ at $x_{0}=100$
3. x at $x_{0}=0$
4. x at $x_{0}=2$
5. $1+x^{2}+x^{3}$ at $x_{0}=0$
6. $1+x^{2}+x^{3}$ at $x_{0}=1$
7. $f(x)=c+b x+a x^{2}$ at $x_{0}=0$ where a, b, c are constants.
8. $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ at $x_{0}=0$.

2 Geometric

1. (Geometric Series Formula) $\frac{1}{1-x}$ at $x_{0}=0$
2. The following can be derived from the Geometric Series Formula (1). (You don't need to apply the formula for Taylor Series in this case. They will always have a finite radius of convergence.)
(a) $\frac{1}{1+x}$ at $x_{0}=0$
(b) $\frac{1}{1-x^{2}}+1+x^{2}+x^{3}$
(c) $\frac{1}{1+x^{2}}$ at $x_{0}=0$
(d) $\frac{1}{\left(1-x^{2}\right)}$ at $x_{0}=0$
(e) $\frac{1}{1-x^{2}}$ at $x_{0}=0$
(f) $\frac{x}{1-x^{2}}$ at $x_{0}=0$
(g) $\frac{1}{1+x^{l}}$ at $x_{0}=0$, here l is a positive integer.
(h) $\frac{1}{1+\frac{x-5}{4}}$ at $x_{0}=5$
(i) $\frac{1}{1-x}$ at $x_{0}=5$ (Hint: use the following "factoring trick" $\frac{1}{1-x}=\frac{1}{-4-(x-5)}=\frac{-1}{4} \cdot \frac{1}{1+\frac{x-5}{4}}$)
(j) $\frac{1}{1-x}$ at $x_{0}=6$
(k) $\frac{1}{x}$ at $x=10$. (Hint: use a "factoring trick" $\frac{1}{x}=\frac{1}{10+(x-10)}$ and finish like in problem (2i))
(l) $\frac{1}{a+x^{n}}$ at $x_{0}=0$
(m) $\frac{1}{1-x}$ at $x_{0}=a$ (Hint: do the factoring trick again)
3. The following can be derived by taking derivatives and definite integrals of things you have already computed and maybe doing a little bit of extra manipulation.
(a) $\frac{-1}{(1-x)^{2}}$ at $x_{0}=0$ (Hint: Take the derivative of $\frac{1}{1-x}$)
(b) $\frac{-1}{(1-x)^{2}}$ at $x_{0}=0$ (Hint: Take the derivative of $\frac{1}{1-x}$ and multiply by (-1))
(c) $\tan ^{-1}(x)$ at $x_{0}=0$ (Hint: $\tan ^{-1}(x)=\int_{0}^{x} \frac{d t}{1+t^{2}}$)
(d) $\frac{1}{(1-x)^{3}}$ at $x_{0}=0$
(e) $\frac{1}{(1-x)^{n}}$ at $x_{0}=0$
(f) $-\ln (1-x)$ at $x_{0}=0$
(g) $-\ln (1-x)$ at $x_{0}=0$ (use the formula for Taylor Series this time)

3 Exponential

1. e^{x} at $x_{0}=0$
2. The following can be derived using the known formula for the exponential function
(a) $e^{x}-1-x^{2}-x^{3}$ at $x_{0}=0$
(b) e^{x} at $x_{0}=2$
(c) $e^{2 x}$ at $x_{0}=0$
(d) $e^{x^{2}}$ at $x_{0}=0$
(e) $\operatorname{erf}(x)$ at $x_{0}=0$ (The error function is defined by $\operatorname{erf}(x)=\int_{-\infty}^{x} e^{-t^{2}} d t$.)
(f) $\cosh (x)$ at $x_{0}=0$
(g) $\sinh (x)$ at $x_{0}=0$
3. $\sin (x)$ at $x_{0}=0$
4. $\cos (x)$ at $x_{0}=\pi / 2$
5. $\cos (x)+\sin (x)$ (write out the first 6 terms) at $x_{0}=0$

4 Roots

1. $(1+x)^{1 / 2}$ at $x_{0}=0$
2. $(1+2 x)^{1 / 3}$ at $x_{0}=0$
3. $(1+x)^{a}$ at $x_{0}=0$ where a is a postive number less than 1 .
4. \sqrt{x} at $x_{0}=1$ (using the formula of the previous problem) $($ Hint: $\sqrt{x}=\sqrt{1+(x-1)})$
