Math 31B - Homework 08

1. Show that the series

$$
\sum_{n \geq 1} \frac{1}{n}
$$

diverges using the definition of convergence.
2. Find the series and the radius of convergence:
(a) $\log _{b}(x)$ at $x_{0}=1$
(b) $\log _{b}(x+1)$ at $x_{0}=0$
(c) $\log _{b}(x+1)$ at $x_{0}=2$.
(Make sure to test endpoints)
3. Determine whether the following series converge or diverge
(a) $\sum_{n \geq 1} \frac{1}{n^{2}+n}$
(b) $\sum_{n \geq 1} \frac{\ln (n)}{n}$
(c) $\sum_{n=2}^{\infty} \frac{1}{\ln (n)^{2}}$
4. Determine whether the following sequence or converge or diverge as $n \rightarrow \infty$
(a) $a_{n}=(-1)^{n}$
(b) $b_{n}=(-1)^{n} / 2^{n}$
(c) $c_{n}=1+(-1)^{n} / 2^{n}$
5. The Bernoulli numbers are defined by the formula

$$
\frac{x}{e^{x}-1}=\sum_{n \geq 0} B_{n} \frac{x^{n}}{n!}
$$

Using long division find the first four Bernoulli numbers. (One the second midterm I was intending you to find these using the Taylor Series formula together with L'Hôpital's rule).
6. (a) Find the Taylor series for $\tan ^{-1}(x)$. (Hint: integrate $\left.1 /\left(1+x^{2}\right)\right)$.
(b) Find a series for $\pi / 4$ using that $\tan ^{-1}(1)=\pi / 4$.
(c) How many terms of this approximation above does one need to take to approximate $\pi / 4$ accurate to 6 decimal places?
7. Find the radius of convergence of the following Taylor series
(a) $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}} x^{2 n}$
(b) $\sum_{j=1}^{\infty}\left(\frac{-2 n}{n+1}\right)^{5 n} x^{n}$
8. Find the interval of convergence for $\frac{1}{1-2 x}$ and $\ln \left(\frac{1}{1-x}\right)$ (make sure to test the endpoints).
9. Consider the series

$$
f(x)=\sum_{n=0}^{\infty} \frac{\sin \left(3^{n} \pi x\right)}{2^{n}}
$$

(this series is an example of a fractal).
(a) Show that the series converges for every x
(b) Show that the series for $f^{\prime}(x)$ is not absolutely convergent.
(c) Show that $f^{\prime}(0)$ is divergent.
(d) Suppose that a and b are positive numbers bigger than one. The following two exercises are to remind you about how to manipulate graphs.
i. Explain why the graph of $g(a x)=b y$ is just the graph of $g(x)=y$ where the x axis is scaled by $1 / a$ and the y-axis is scaled by $1 / b$. (Hint: Consider the graph of $g(\tilde{x})=\tilde{y}$ and let $\tilde{x}=a x$ and $\tilde{y}=b y$. To obtain x we shrink \tilde{x} by a and to obtain y we shrink \tilde{y} by b).
ii. Explain why the graph of $g(x-a)=y-b$ is just the graph of $g(x)=y$ where the x-axis shifted the the right by a and the y-axis is shifted up by b.
(e) The following exercises show the "self-similarity" this fractal
i. Show that $f(x+1)=-f(x)$. (Show that $f(x)$ is periodic with period 2)
ii. Explain why shifting the graph to the left by 1 is the same as reflecting it across the y-axis.
iii. Show that $f(3 x) / 2=f(x)-\sin (\pi x)$.
iv. Explain why shrinking the graph $y=f(x)$ by $1 / 3$ on the x-axis and by $1 / 2$ on the y-axis is the same as shifting the whole graph down by $\sin (\pi x)$.
(f) Draw a graph of $f(x)$.
10. Find the value of the following continued fraction

$$
1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}
$$

(Hint if x is equal to the continued fraction you have $x=1+1 / x$)
11. Let $g(x)$ the the inverse function of $f(x)=x+x^{5}$. Find the first three terms of the Taylor series for $g(x)$ centered at $x=0$.

