Test 3 - Math 264 - Fall 2009

December 7, 2009

1. Let D be the rectangle bounded by the lines $x=0, x=1, y=0$ and $y=2$. Compute

$$
\int_{D} x^{2} y+e^{z} y d A
$$

2. Find the volume region of the under surface $z=x y$ lying above the region bounded by $y=-x^{2}+1$ and $y=0$ in the $x y$-plane.
3. Compute $\int_{C} \vec{F} \cdot \vec{T} d s$ where $\vec{F}(x, y, z)=x \hat{i}+y \hat{j}+z^{2} \hat{k}$, and C is parametrized by $\vec{r}(t)=t \hat{i}+t^{2} \hat{j}+t \hat{k}$ where $t \in[0,1]$.
4. Let $\vec{F}=y z \hat{i}+x z \hat{j}+x y \hat{k}$. Compute its potential and use it to evaluate $\int_{C} \vec{F} \cdot \vec{T} d s$ where C is parametrized by $\vec{r}(t)=\sin (t) \hat{i}+t \hat{j}+t \sin (t) \hat{k}$ where $t \in[0, \pi / 2]$.
5. Find the surface area $z=4-x^{2}-y^{2}$ above the region $z=0$.
6. Let C be the square contour made from line segments going from $(0,0)$ to $(1,0)$ to $(1,1)$ to $(0,1)$ back to $(0,0)$. Use Green's Theorem to evaluate the line integral

$$
\int_{C} y^{2} e^{x} d x+x e^{y} d y
$$

7. Let \vec{F} be the vector field $\vec{F}(x, y)=A(x, y) \vec{i}+B(x, y) \vec{j}$ and $u=u(x, y)$ be a function of two variable. Prove that

$$
\nabla \cdot(u(x, y) \vec{F}(x, y))=\nabla u(x, y) \cdot \vec{F}(x, y)+u(x, y)(\nabla \cdot \vec{F}(x, y))
$$

NOTE: $\nabla \cdot \vec{F}=\operatorname{div}(\vec{F})$ so in other notation the problem says $\operatorname{div}(u \vec{F})=\nabla u \cdot \vec{F}+u \operatorname{div}(\vec{F})$.
8. For $x=r \cos (\theta)$ and $y=r \sin (\theta)$ show that $\frac{\partial(x, y)}{\partial(r, \theta)}=r$ and conclude that $d A=r d r d \theta$.
9. Compute

$$
\iiint_{\Omega} z d V
$$

where Ω is the upper half of the unit ball, bounded above by $x^{2}+y^{2}+z^{2}=1$ and bounded below by $z=0$. (You may want to convert to Spherical)
10. Determine if the vector field $\vec{F}=x \hat{i}+y^{2} \hat{j}+z \hat{k}$ is conservative.

