Test 3 - Math 264 - Fall 2010

December 9, 2010

Please show all of your work. You can finish the test a lot quicker if you think about the integrals before you dive in and start computing.

1. Let $D \subset \mathbb{R}^{2}$ be the disk centered at the origin of radius R. Compute $\iint_{D} d A$.
2. Evaluate the triple integral

$$
\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} x e^{y z} z^{4} d y d z d x
$$

3. The surface area of the graph of a function $f(x, y)$ above a domain D in the $x y$-plane is given by

$$
S=\iint_{D} \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A
$$

Find the surface area of the portion of the plane $x+2 y+z=100$ that lies above the unit square $\{(x, y): 0 \leq x \leq 1$ and $0 \leq y \leq 1\}$ in the first octant.
4. Consider the integral

$$
\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} f(x, y) d x d y
$$

(a) Sketch the domain of integration in \mathbb{R}^{2}.
(b) Change the order of integration.
5. Compute the integral
$\int_{0}^{\ln (10)} \int_{e^{x}}^{10} \frac{1}{\ln (y)} d y d x$.
6. Evaluate the double integral:

$$
\int_{0}^{2} \int_{y}^{\sqrt{8-y^{2}}} \sqrt{x^{2}+y^{2}} d x d y
$$

7. Prove that the volume of a ball of radius R is equal to $\frac{4 \pi R^{3}}{3}$.

Extra Credit (a) Let a, b and c be strictly positive real numbers numbers. Let H be the plane containing the points $(a, 0,0),(0, b, 0)$ and $(0,0, c)$. Show that the tetrahedron bounded by H in the first octant has volume $\frac{a b c}{6}$.
(b) Find the area of the region in the $x y$-plane enclosed by the curve

$$
\left(\left(x^{2}+y^{2}\right)-x\right)^{2}=x^{2}+y^{2}
$$

