Exam 02 - Dupuy - Math 264 - Fall 2010

Instructions Remember to show all your work to get full credit. Please leave answers in their exact form. This is a closed book test. You may not use a calculator. If you need extra paper let me know.

Name:

Section:

Problem	Possible	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
EC	10	
Total	100	

1. (10 points) Compute $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ of the following functions
(a) $u(x, y)=e^{x y}$.
(b) $u(x, y)=\sin (x y) y$.
2. (10 points) Show that the function $u(x, t)=f(x-c t)+g(x+c t)$ satisfies the wave equation.
3. (10 points)
(a) How can you show that a limit of a function of two variable doesn't exist?
(b) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{3}+y^{3}}$ doesn't exist.
4. (10 points) Let $f(x, y)$ be a function of two variables. Using the chain rule show that $f_{r}=\frac{f_{x} x+f_{y} y}{\sqrt{x^{2}+y^{2}}}$ where $x=r \cos (\theta)$ and $y=r \sin (\theta)$.
5. (10 points) Find the plane tangent to the graph of the following functions at the specified point.
(a) $e^{x y}+x^{2}, P=(0,1,1)$
(b) $g(x, y)=x^{3}+y^{3}, Q=(-1,1,0)$.
6. (10 points) Find the plane tangent to the surface at the specified point:
(a) $x^{4}+y^{4}+z^{4}=1 P=(1,0,0)$.
(b) $z-x^{3}-y^{3}=0, Q=(-1,1,0)$ (Hint: compare to part b of the previous problem).
7. (10 points) Find the critical points of $f(x, y)=-\left(x^{2}-1\right)^{2}-y^{2}$ and classify them.
8. (10 points) Find the maximal volume for a rectangle inscribes in the elliptsoid $x^{2}+$ $2 y^{2}+3 z^{2}=1$.
9. (10 points)
(a) Plot the level curves of the function $f(x, y)=x^{2} y$.
(b) What do the level surfaces of the function $g(x, y, z)=z^{2}+4 y^{2}+z^{2}$ look like? (a one sentence answer is acceptable).
10. Suppose that $f(x, y)$ is a differentiable function and $c \in \mathbb{R}$. Suppose $\vec{r}(t)$ is differentiable and parametrized the level set $\{(x, y): f(x, y)=c\}$ Show that for all t in the domain of $\vec{r}(t)$ that $\vec{r}(t)$ and $\nabla f(\vec{r}(t))$ are perpendicular.
11. (10 points) (EXTRA CREDIT)
(a) For $\vec{r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\vec{r}(s, t)=(x(s, t), y(s, t))$ what is the Jacobian matrix of \vec{r} ?
(b) How does this provide a way to view the chain rule of several variables as a genuine "chain rule" (write the pair of equations that we call the chain rule as a single matrix equation involving the Jacobian matrix).
(c) Show tha the Hessian matrix is the Jacobian matrix of the gradient.
