Exam 2 - Dupuy - Spring 2010

Instructions Remember to show all your work to get full credit. Please leave answers in their exact form. This is a closed book test. You may not use a calculator. If you need extra paper let me know.

This has been retyped from an old exam given in MATH264 at University of New Mexico where the students had an hour and a half but could stay after to finish if they needed. Please note that the second exam in MATH121 at University of Vermont will contain double integrals.

Name:

Section:

Problem	Possible	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

1. (10 points) Compute $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial x^{2}}$ and $\frac{\partial^{2} f}{\partial y^{2}}$ for
(a) $f(x, y)=e^{x y}$
(b) $f(x, y)=x^{3}+4 x y+y^{2}$
2. (10 points) Find the plane tangent to the graph of

$$
f(x, y)=x^{2}+2 x-y^{2}+6 x y
$$

at the point $(1,1)$.
3. (10 points) Compute $D_{\vec{v}} f\left(x_{0}, y_{0}\right)$ in the following cases. If \vec{u} is not initially given as a unit vector, please normalize it.
(a) $f(x, y)=e^{x+y},\left(x_{0}, y_{0}\right)=(1,2), \vec{u}=(1,0)$
(b) $f(x, y)=e^{x^{2} y},\left(x_{0}, y_{0}\right)=(1,3), \vec{u}=(1,3)$
4. (10 points)
(a) What unit vector \vec{u} maximizes $D_{\vec{u}} f\left(x_{0}, y_{0}\right)$?
(b) Explain/Prove that the statement you gave above is true.
(c) Find the direction of maximum increase of the function $x^{2}+2 x y-1$ at the point $(-1,1)$.
5. (10 points) If $z=y+f\left(x^{2}-y^{2}\right)$ where f is differentiable, show that

$$
y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=x
$$

6. (10 points) Determine if the limit exists or not. If so, state the value of the limit.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{3}+4 y^{3}}$.
(b) $\lim _{(x, y) \rightarrow(1,1)} \frac{x^{3}-y^{3}}{x-y}$.
7. (10 points) Compute $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ using the chain rule.
(a) $f(x, y)=e^{x y}, x=s \cos t, y=s \sin t$
(b) $f(x, y)=x^{2}-y^{2}, x=e^{s t}, y=e^{-t^{2}}$
8. (10 points) Find the critical points and determine if they are maxima, minima, or saddle points. (None existence is ok)
(a) $f(x, y)=x^{2}-2 y+3$
(b) $g(x, y)=x^{2}-y^{2}-2 x-2 y$
9. (10 points) Find the points on the surface $x y^{2} z^{3}=2$ that are closest to the origin. Hint: That surface is a constraint and you want to optimize the distance to the origin.
Tip: Optimize the distance squared rather than the straight up distance.
10. (10 points) Suppose that f is differentiable. Prove that the vectors tangent to the level sets

$$
L_{C}=\{(x, y): f(x, y)=C\}
$$

are perpendicular to ∇f.
Hint: Suppose that $\vec{r}(t)=(x(t), y(t))$ parametrizes L_{C}.

