A Quick Peek at Complex Differentiable Functions

Taylor Dupuy

October 2, 2009

A function of a complex variable is a function $f: D \rightarrow \mathbb{C}$ where D is some domain of the complex numbers where the function is defined.

- Polynomials like $f(z)=z^{2}+2$ can be considered complex valued functions.
- The exponential function $\exp (z)=e^{z}$ can be considered as a complex valued function.

As stated before the complex numbers \mathbb{C} consist of numbers of the form $z=x+i y$. That is, they can be put into correspondence with pairs of real numbers (x, y) :

$$
x+i y \leftrightarrow(x, y)
$$

The only difference between \mathbb{C} and \mathbb{R}^{2} is that \mathbb{C} has a multiplication.
A useful thing to notice is that every complex valued function can be broken up into it's real an imaginary parts:

$$
f(z)=f(x+i y)=u(x, y)+i v(x, y)
$$

where $u(x, y)$ and $v(x, y)$ are now functions which take in two real inputs and output one real number. For example, if $f(z)=z^{2}$ then we have

$$
z^{2}=(x+i y)^{2}=x^{2}-y^{2}+i(2 x y)
$$

here $u(x, y)=x^{2}-y^{2}$ and $v(x, y)=2 x y$. Here is how we do it for the exponential function $\exp (z)$:

$$
e^{z}=e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos (y)+i \sin (y))=e^{x} \cos (y)+i e^{x} \sin (y)
$$

Here we have $u(x, y)=e^{x} \cos (y)$ and $v(x, y)=e^{x} \sin (y)$. In breaking up the exponential function we used Euler's Formula $e^{i \theta}=\cos (\theta)+i \sin (\theta)$.

Definition Let D be a subset of the complex numbers. A function $f: D \rightarrow \mathbb{C}$ is said to be analytic provided that for every $z \in D$ the limit

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}=f^{\prime}(z) \tag{1}
\end{equation*}
$$

exists. Here h is taken to be a complex number and taking $h \rightarrow 0$ in ANY way needs to give the same number $f^{\prime}(z)$!

The statement about a function is saying something interesting about all the directional derivatives. If we take $h=t,(t$ is real) and let $t \rightarrow 0$ we are essentially taking a partial derivative with respect to x, or the directional derivative in the direction of x. If we take $h=i t$ and let $t \rightarrow 0$ then we are essentially taking a partial derivative with respect to y.

Let's be more explicit. When letting $h=t$ we have,

$$
\begin{aligned}
f^{\prime}(z)=\lim _{t \rightarrow 0} \frac{f(z+t)-f(z)}{t} & =\lim _{t \rightarrow 0} \frac{f(x+t+i y)-f(x+i y)}{t} \\
& =\lim _{t \rightarrow 0} \frac{[u(x+t, y)+i v(x+t, y)]-[u(x, y)-i v(x, y)]}{t} \\
& =\lim _{t \rightarrow 0}\left(\frac{u(x+t, y)-u(x, y)}{t}+i \frac{v(x+t, y)-v(x, y)}{t}\right) \\
& =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}
\end{aligned}
$$

When letting $h=i t$ we have

$$
\begin{aligned}
f^{\prime}(z)=\lim _{t \rightarrow 0} \frac{f(z+i t)-f(z)}{i t} & =\lim _{t \rightarrow 0}-i \frac{f(x+i(y+t))-f(x+i y)}{t} \\
& =\lim _{t \rightarrow 0}-i \frac{[u(x, y+t)+i v(x, y+t)]-[u(x, y)-i v(x, y)]}{t} \\
& =-i \lim _{t \rightarrow 0}\left(\frac{u(x, y+t)-u(x, y)}{t}+i \frac{v(x, y+t)-v(x, y)}{t}\right) \\
& =-i\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \\
& =\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y} .
\end{aligned}
$$

On the second equality step we used the fact that $1 / i=-i$. This might have some people worried since we have two different expression for $f^{\prime}(z)$! But since we didn't do anything wrong they must be equal:

Theorem 0.1 (Cauchy-Riemann Equations) If $f(z)=u(x, y)+i v(x, y)$ is complex differentiable then

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

By equating real an imaginary parts of these two expressions we get the Cauchy-Riemann Equations:

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} & =-\frac{\partial v}{\partial x}
\end{aligned}
$$

Let's look at this for some examples. For $f(z)=z^{2}$ we have $u=x^{2}-y^{2}$ and $v=2 x y$,

$$
\begin{aligned}
u_{x} & =2 x \\
u_{y} & =-2 y, \\
v_{x} & =2 x \\
v_{y} & =2 y .
\end{aligned}
$$

One can check that the equations work: $u_{x}=v_{y}$ and $u_{y}=-v_{x}$.
Now consider the exponential function $\exp (z)=e^{z}$. Here we have $u=e^{x} \cos (y)$ and $v=e^{x} \sin (y)$.

$$
\begin{aligned}
u_{x} & =e^{x} \cos (y) \\
u_{y} & =-e^{x} \sin (y) \\
v_{x} & =e^{x} \sin (y) \\
v_{y} & =e^{x} \cos (y)
\end{aligned}
$$

The component functions u and v of a are so important that we give them a name.
Definition If $u(x, y)$ is the component function of a complex differentiable function $f(z)$ i.e. $f(z)=$ $u(x, y)+i v(x, y)$ then we say that $u(x, y)$ is harmonic and call $v(x, y)$ the harmonic conjugate of $u(x, y)$.

