Practice Test 1 - Math 264 - Fall 2009

September 29, 2009

1. Find $\vec{a} \times \vec{b}$ where
(a) $\vec{a}=(1,0,-1)$ and $\vec{b}=(1,2,-1)$
(b) $\vec{a}=(1,1,0)$ and $\vec{b}=(1,0,1)$
2. Find the vector project of $\vec{a}=(1,0,-1)$ onto $\vec{b}=(1,2,-1)$.
3. Let $\vec{a}=(1,0,1)$ and $\vec{b}=(2,0,1)$.
(a) Compute the dot product of the two vectors.
(b) Find the angle between \vec{a} and \vec{b}.
4. Let $\vec{l}_{1}(t)=(0,2,1)+(1,-2,-1) t$ and $\vec{l}_{2}(t)=(1,0,0)+t(1,1,1)$.
(a) Determine the point where the two lines intersect.
(b) Determine an equation of the plane that contains both of the lines.
5. Find the distance between the point and $P=(2,2,2)$ and the line $\vec{l}(t)=(1,1,1)+(-1,0,2) t$.
6. Find the distance between the point $P=(0,0,0)$ and the plane $x+y+z+1=0$.
7. Find a parametrization for the line that the intersection of the two planes

$$
\left\{\begin{array}{l}
x+y+z+1=0 \\
2 x-y=0
\end{array}\right.
$$

8. Classify the quadric surface.

$$
x^{2}-2 x+y^{2}-4 y+-z^{2}-2 z=0
$$

9. Trajectories for two particles are given by $\vec{a}(t)=\left(t, t^{2}, t^{3}\right)$ and $\vec{b}(t)=(t, 2 t, 3 t+2)$.
(a) Do the paths defined by $\vec{a}(t)$ and $\vec{b}(t)$ intersect?
(b) Do the particles collide?
10. Give a parametrization for the line that passes through the points $(-1,2,0)$ and $(2,0,0)$ then write it down in parametric form.
