Practice Test 3 - Math 264 - Fall 2009

December 2, 2009

1. Find the volume under the surface $x^{2} y=z$ lying above the domain D in the $x y$-plane bounded by the curves $x=y^{2}$ and $y=x^{2}$.
2. Evaluate the integral

$$
\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x
$$

Hint: Consider the domain of integration and rewrite the integral so that you integral x first.
3. Compute

$$
\int_{C} \vec{F} \cdot \vec{T} d s
$$

where $\vec{F}=x^{2} \hat{i}+y \hat{j}+2 \hat{k}$ and C is the line segment between the points ($1,0,1$) and (2,0,-2).
4. Determine if the vector field $\vec{F}=x y z \hat{i}+x y z \hat{j}+\hat{k}$ is conservative.
5. Compute that potential of the vector field and use it to compute the integral

$$
\int_{C} \vec{F} \cdot \vec{T} d s
$$

where $F=\left(e^{x} y+z\right) \hat{i}+e^{x} \hat{j}+x \hat{k}$
6. Compute the mass of the 3 D region under above the $x y$-plane and below the paraboloid $z=$ $1-x^{2}-y^{2}$ which has a density function $\rho(x, y, z)=\rho_{0} x^{2}+y^{2}$ (Hint: Convert to Spherical or Cylindrical coordinates)
7. Find the surface area of the segment of the paraboloid $x=y^{2}+z^{2}$ bounded by the plane $x=2$.
8. Apply Green's Theorem to evaluate the line integral

$$
\int_{C} x^{2} y d x-y^{2}(x+1) d y
$$

where C is the circle of radius 3 in the $x y$-plane oriented counterclockwise.
9. (a) For any vector field $F=F(x, y)=(A(x, y), B(x, y))$ and any function $u=u(x, y)$ prove

$$
\nabla \cdot(f F)=\nabla f \cdot F+f(\nabla \dot{F})
$$

(b) Let D be two dimensional region with boundary C,

$$
\iint_{D} u \nabla^{2} v d V=\int_{C}(u \nabla v) \cdot N d s-\iint_{D} \nabla u \cdot \nabla v d V
$$

Hint: expand $\iint_{D} \nabla \cdot(u \nabla v) d V$ in two different ways. (1) Using the second form of Green's Theorem (2) Using the product rule above.
10. (a) Let C_{1} be the contour parametrized by $r_{1}(t)=(\cos (t), \sin (t))$ for $t \in[0, \pi]$ and compute

$$
\int_{C_{1}} \frac{x}{x^{2}+y^{2}} d y+\frac{-y}{x^{2}+y^{2}} d x
$$

(b) Let C_{2} be the contour parametrized by $r_{2}(t)=(\cos (-t), \sin (-t))$ for $t \in[0, \pi]$ and compute

$$
\int_{C_{2}} \frac{x}{x^{2}+y^{2}} d y+\frac{-y}{x^{2}+y^{2}} d x
$$

11. Compute

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

Hint: see 16.4:36.
12. Find the volume of the three dimensional region inside the sphere $x^{2}+y^{2}+z^{2}=16$ and outside the cylinder $x^{2}+y^{2}=4$.
13. Spherical Coordinates are given by

$$
\left\{\begin{array}{l}
x=\rho \sin (\phi) \cos (\theta) \\
y=\rho \sin (\phi) \sin (\theta) \\
z=\rho \cos (\phi)
\end{array}\right.
$$

Using the Jacobian derive the formula derive the formula $d V=\rho^{2} \sin (\phi) d \rho d \theta d \phi$
14. Prove that if $\vec{F}(x, y, z)=\nabla u$ where $u=u(x, y, z)$ then for any curve oriented curve C which starts at $\left(x_{0}, y_{0}, z_{0}\right)$ and ends at $\left(x_{1}, y_{1}, z_{1}\right)$ we have

$$
\int_{C} \vec{F}(x, y, z) \cdot \vec{T} d s=u\left(x_{1}, y_{1}, z_{1}\right)-u\left(x_{0}, y_{0}, z_{0}\right) .
$$

Hint: Let $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ be a parametrization of C with $t \in[a, b]$ then proceed evaluating the left hand side. You will end up using $\nabla u\left(\vec{r}(t) \cdot \vec{r}^{\prime}(t)=\frac{d}{d t}[u(\vec{r}(t))]\right.$ and applying the fundamental theorem of calculus.
15. Compute the integral $\int_{0}^{1} \int_{0}^{5} x^{2} y+e^{y} d x d y$.

