Final - Math 264 - Fall 2009

December 6, 2010

Remember to show your work. Do as many problems as you can.

1. Show that the equation $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z+2=0$ represents a sphere. Find its radius and center.
2. (a) Find the vector projection of $\mathbf{b}=(1,2,2)$ onto $\mathbf{a}=(1,1,0)$.
(b) Find the scalar projection of $\mathbf{b}=(1,2,2)$ onto $\mathbf{a}=(3,4,0)$.
3. (a) Find an equation of the plane parallel to $2 x+3 y+4 z=5$ which passes through the point $(1,1,1)$.
(b) Find an equation of the plane passing through the points $(1,0,0),(0,2,0)$ and $(0,0,3)$.
4. Find the parametrization of the line tangent to the curve $\vec{r}(t)=\left(t^{2}, e^{t-1}, t\right)$ at the point $P=$ $(1,1,1)$.
5. Find an equation for the plane tangent to the surface $z^{2}=y e^{x}$ at the point $(0,1,1)$.
6. Let $\vec{r}(t)=(t+1, t+2, t+3)$. Find a parametrization of a line parallel to $\vec{r}(t)$ which passes through point $\vec{r}_{0}=(3,2,1)$.
7. Use the chain rule to compute $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$. Express your final answers in terms of s and $t . z=x^{2} y$, $x(s, t)=s t, y(s, t)=s^{2}$.
8. Draw the level sets of the following functions.
(a) $f(x, y)=x y$
(b) $g(x, y)=x^{2}+y+1$
9. Let $\mathbf{r}_{1}(t)=\left(t, t^{2}, t^{3}\right)$ and $\mathbf{r}_{2}(s)=(1+s, 1+s, 1-s)$.
(a) Find where the two curves intersect.
(b) Find the angle of intersection.
10. Let $\mathbf{r}_{1}(t)=(a(t), b(t))$ and $\mathbf{r}_{2}(t)=(x(t), y(t))$. Prove

$$
\frac{d}{d t}\left[\mathbf{r}_{1}(t) \cdot \mathbf{r}_{2}(t)\right]=\mathbf{r}_{1}^{\prime}(t) \cdot \mathbf{r}_{2}(t)+\mathbf{r}_{1}(t) \cdot \mathbf{r}_{2}^{\prime}(t)
$$

11. Find the volume of the region bounded by $y^{2}+z^{2}=9, x=0, x=3$ and above $z=0$.
(a) Setup the integral.
(b) Compute the integral.
12. Find the volume under the graph of $f(x, y)=e^{-x^{2}-y^{2}}$ over the whole $x y$-plane.
(a) Setup to integral.
(b) Compute the integral.
13. Evaluate the line Integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left(2 x y z, x^{2} z, x^{2} y\right)$ and C is the straight line segment from the point $(0,0,0)$ to the point $(1,1,1)$ in two ways
(a) By a direct computation (Apply the definition of the line integral).
(b) By the Fundamental Theorem of Line Integrals (Compute the potential and apply the theorem).
14. Setup the integral $\iiint_{T} y d V$ where T is the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $2 x+y+z=2$.
15. Setup the integral $\int_{C} d s$ where C is the curve parametrized by $\mathbf{r}(t)=\left(t, t^{2}, t^{3}\right)$ for $t \in[0,1]$.
16. Evaluate the integral $\iiint_{E} y z d V$ where E lies above the $z=0$ and below $z=y$ and inside the cylinder $x^{2}+y^{2}=4$.
17. Let $f(x, y)=x^{2}+4 x+y^{2}+x y$.
(a) Find the critical points of f.
(b) Classify the critical points of f.
18. Evaluate $\int_{C}(2 y+\sin (x)) d x+\left(x+e^{y}\right) d y$ where C is the contour pictured below, oriented in the counter clockwise direction.
19. Evaluate $\iint_{S}(\nabla \times \vec{F}) \cdot \vec{N} d S$ where S is the part of the surface $x^{2}+y^{2}+z^{4}=1$ where $z \geq 0$ and $\vec{F}=\left(x, y, z^{3}\right)$. The surface S is oriented with an outward pointing normal.
20. Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$ where $\vec{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and S is a sphere of radius two centered at the origin. Also, let S have an outward pointing normal.
