Math 121 - Homework 02

Instructions Remember to show all of your work to get credit. Please do this assignment on a separate sheet of paper. The assignment is due at the beginning of class on Friday. Use you

1. Consider the hyperbolic paraboloid X defined by

$$
z=y^{2}-x^{2}
$$

(a) For a point (a, b, c) lying on X show that the line

$$
\left\{\begin{array}{l}
x=a+t \\
y=b+t \\
z=c+2(b-a) t
\end{array}\right.
$$

lies on the surface of X.
(b) Draw the hyperbolic paraboloid X and the line for the point $(1,1,0)$.
(Surfaces where every point has a line through it completely contained in the surface is called "ruled". This exercise shows that this hyperbolic paraboloid is ruled.)
2. Prove the product rule for the cross product:

$$
\frac{d}{d t}(\mathbf{u}(t) \times \mathbf{v}(t))=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)
$$

(Hint: Use the definition of $\mathbf{u}(t) \times \mathbf{v}(t)$ and the definition of the derivative on components. If it feels tedious you are doing it right.)
3. Prove that the derivative of angular momentum is torque:

$$
\frac{d}{d t}[\vec{l}(t)]=\vec{\tau}(t)
$$

Here we recall that for a particle of mass m and position $\vec{r}(t)$ we have the following definitions:

$$
\begin{gathered}
\text { (angular momentum) }=\vec{l}(t)=\vec{r}(t) \times \vec{p}(t) \\
\qquad \begin{array}{c}
\text { (torque) }=\vec{\tau}(t)=\vec{r}(t) \times \vec{F}(t) . \\
(\text { momentum })=\vec{p}(t)=m \dot{\vec{r}}(t) \\
(\text { force })=\vec{F}(t)=m \ddot{\vec{r}}(t)
\end{array}
\end{gathered}
$$

(Hint: The answer is one line.)
4. Suppose that $\mathbf{r}(t)$ is a vector valued function such that $\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0$. Show that $\mathbf{r}(t)$ lives on a circle centered at the origin. (Hint: Write $\mathbf{r}(t)=(x(t), y(t), z(t))$ and take the derivative of the function $|\mathbf{r}(t)|^{2}$ after expanding everything out.)

