Math 121 - Homework 03

Instructions Remember to show all of your work to get credit. Please do this assignment on a separate sheet of paper. The assignment is due at the beginning of class on Friday.

1. Setup but don't compute the arclength of $\vec{\gamma}(t)=\left(t^{2}, t^{3}, t^{4}\right)$ from $0 \leq t \leq 1$.
2. On page 864 of Stewart, he gives a formula for the curvature of a parameteric curve $\vec{r}(t)$:

$$
\kappa(t)=\frac{|\dot{\vec{r}}(t) \times \ddot{\vec{r}}(t)|}{|\ddot{\vec{r}}(t)|^{3}}
$$

Using this formula, show that the curvature of a plane parametric curve $(x(t), y(t))$ is given by

$$
\kappa(t)=\frac{|\dot{x}(t) \ddot{y}(t)-\dot{y}(t) \ddot{x}(t)|}{\left[\ddot{x}(t)^{2}+\ddot{y}(t)^{2}\right]^{3 / 2}}
$$

3. Consider the curve

$$
\vec{\gamma}(t)=\left(\frac{2}{t^{2}+1}-1, \frac{2 t}{t^{2}+1}\right)
$$

(a) Reparametrize this curve in terms of arclength measured from the point $\vec{\gamma}(0)=(1,0)$.
(b) What is the curve parametrized by $\vec{\gamma}(t)$? (You can say the name of it, or give its algebraic equation)
4. Suppose that $\mathbf{r}(t)$ is a vector valued function such that $\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0$. Show that $\mathbf{r}(t)$ lives on a sphere centered at the origin. (Hint: Write $\mathbf{r}(t)=(x(t), y(t), z(t))$ and take the derivative of the function $|\mathbf{r}(t)|^{2}$ after expanding everything out.)

