Dupuy - Math 121 - Homework 05

Instructions Remember to show all of your work to get credit. Please do this assignment on a separate sheet of paper. Remember to use your words.

1. Consider a function $w=f(x, y)$ where $x=r \cos (\theta)$ and $y=r \sin (\theta)$. Prove the following
(a)

$$
\begin{aligned}
& \frac{\partial w}{\partial x}=\frac{\partial w}{\partial r} \cos (\theta)-\frac{\partial w}{\partial \theta} \frac{\sin (\theta)}{r} \\
& \frac{\partial w}{\partial y}=\frac{\partial w}{\partial r} \sin (\theta)+\frac{\partial w}{\partial \theta} \frac{\cos (\theta)}{r}
\end{aligned}
$$

(b)

$$
\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}=\left(\frac{\partial w}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial w}{\partial \theta}\right)^{2}
$$

2. A function $f(x, y)$ is said to be homogeneous of degree d if

$$
f(t x, t y)=t^{d} f(x, y)
$$

(a) Show that $f(x, y)=x^{3}-3 x y^{2}+y^{3}$ is homogeneous. What is its degree?
(b) Show that if $g(x, y)$ is homogeneous of degree d with $d \geq 1$ then

$$
x \frac{\partial g}{\partial x}+y \frac{\partial g}{\partial y}=d g(x, y)
$$

(Hint: Compute $\frac{\partial}{\partial t}[g(t x, t y)]$ in two different ways.)
3. Two surfaces are said to be orthogonal at a point P if the normal lines at those points are perpendicular. Show that the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+y^{2}+z^{2}=r^{2}$ are orthogonal at every point of intersection.

