Dupuy - Math 121 - Homework 06

Instructions Remember to show all of your work to get credit. Please do this assignment on a separate sheet of paper. Remember to use your words.

1. Three alleles (alternative versions of a gene) A, B and O determine the four blood types A (AA or AO$), \mathrm{B}(\mathrm{BB}$ or BO$), \mathrm{O}(\mathrm{OO})$ and AB . The Hardy-Weinberg Law states that the proportion of individuals in a population who carry two different alleles is

$$
P=2 p q+2 p r+2 r q
$$

where p, q and r are the proportions of A, B and O in the population. Use the fact that $p+q+r=1$ to show that P is at most $2 / 3$. (Note that $p, q, r \geq 0$)
2. Optimize the function $f(x, y, z, t)=z+y+z+t$ subject to the constraint $x^{2}+y^{2}+z^{2}+t^{2}=1$.
3. Optimize the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the constraints $x-y=1$ and $y^{2}-z^{2}=1$.

