Dupuy - Math 121 - Homework 10

Instructions Remember to show all of your work to get credit. Please do this assignment on a separate sheet of paper. Remember to show your work.

1. The following example illustrate the type of phenomena that occur when you don't have a simply connected domain for your vector field but do have a sort-of path independence (up-to winding yourself around the point $(0,0))$. Perform the following computations directly.
(a) Compute the integral

$$
\frac{1}{2 \pi} \oint_{C} \frac{x d y-y d x}{x^{2}+y^{2}}
$$

where C the oriented path starting at $(1,0)$ which goes around the unit circle three times in the counter-clockwise direction.
(b) Compute the integral

$$
\frac{1}{2 \pi} \oint_{B} \frac{x d y-y d x}{x^{2}+y^{2}}
$$

where B is the counter-clockwise oriented closed box with endpoints $(1,-1),(1,1),(-1,1)$ and $(-1,1)$. This is a path made from straight line segments between each of the corners of the box which starts and ends at the point $(-1,1)$.
(c) Compute the integral

$$
\frac{1}{2 \pi} \oint_{D} \frac{x d y-y d x}{x^{2}+y^{2}}
$$

where D is three copies of B attached end-to-end.
2. Let R be the region bounded above by $y=f_{2}(x)$ and bounded below by $y=f_{1}(x)$ for $x \in[a, b]$. Let C be the boundary of the region R oriented in the counter-clockwise direction. In class we showed that

$$
\begin{equation*}
\oint_{C} P d x=-\iint_{R} \frac{\partial P}{\partial y} d A . \tag{1}
\end{equation*}
$$

(a) Doing a similar computation, bounding the region by functions $x \in\left[g_{1}(y), g_{2}(y)\right]$ and $y \in[c, d]$ show that

$$
\begin{equation*}
\oint_{C} Q d y=\iint_{R} \frac{\partial Q}{\partial x} d A \tag{2}
\end{equation*}
$$

Make sure to draw the region.
(b) Conclude Green's Theorem from equations (1) and (2).
3. In class we started the proof that

$$
f(x, y)=\int_{\left(x_{0}, y_{0}\right)}^{(x, y)} \mathbf{F} \cdot d \mathbf{r}
$$

is a potential for \mathbf{F} provided that line integrals for \mathbf{F} were path independent. We showed that if $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$ then $\frac{\partial f}{\partial x}=M$.
(a) Use a similar argument to the one we used in class to show that $\frac{\partial f}{\partial y}=N$.
(b) Conclude that $\nabla f=\mathbf{F}$.

