Dupuy - Math 121 - Homework 11

Instructions Remember to show all of your work to get credit. Please do this assignment on a separate sheet of paper. Remember to show your work.

1. Consider the parametrization of the Möbius strip $\vec{r}(\theta, v)=(x(\theta, v), y(\theta, v), z(\theta, v))$ where

$$
\left\{\begin{array}{l}
x(\theta, v)=(1+v \cos (\theta / 2)) \cos (\theta) \\
y(\theta, v)=(1+v \cos (\theta / 2)) \sin (\theta) \\
z(\theta, v)=v \sin (\theta / 2)
\end{array}\right.
$$

where $\theta \in[0,2 \pi]$ and $v \in[-1 / 2,1 / 2]$.
Show that the Möbius strip is not orientable by showing that the normal vector at $\vec{r}(0,0)$ is the negative of the normal vector at $\vec{r}(2 \pi, 0)$.
2. Compute the surface area of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

(Hint: use coordinates from homework 9).
3. Let Ω be a region in \mathbf{R}^{3} with smooth boundary $\partial \Omega$. Let \mathbf{F} be a vector field and f be a function. Prove the following "integration by parts" formula:

$$
\int_{\Omega} f(\nabla \cdot \mathbf{F}) d V=\int_{\partial \Omega}(f \mathbf{F}) \cdot \widehat{\mathbf{N}} d S-\int_{\Omega} \mathbf{F} \cdot \nabla f d V
$$

(Hint: use the divergence theorem and the product rule for divergence).
4. Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$. Complete the proof of the divergence theorem for a simple region E with boundary $\partial E=M$. Here are the steps
(a) Show

$$
\begin{aligned}
\iiint_{E} \frac{\partial P}{\partial x} d V & =\iint_{M} P \mathbf{i} \cdot \widehat{\mathbf{N}} d S \\
\iiint_{E} \frac{\partial Q}{\partial y} d V & =\iint_{M} Q \mathbf{j} \cdot \widehat{\mathbf{N}} d S
\end{aligned}
$$

(b) Conclude the divergence theorem from the equations

$$
\left\{\begin{array}{l}
\iiint_{E} \frac{\partial R}{\partial \widetilde{ }} d V=\iint_{M} R \mathbf{k} \cdot \widehat{\mathbf{N}} d S \\
\iiint_{E} \frac{\partial \mathscr{P}}{\partial x} d V=\iint_{M} P \mathbf{i} \cdot \widehat{\mathbf{N}} d S \\
\iiint_{E} \frac{\partial Q}{\partial y} d V=\iint_{M} Q \mathbf{j} \cdot \widehat{\mathbf{N}} d S
\end{array}\right.
$$

