Midterm 1 - Dupuy - Math 121 — Fall 2016

Instructions Remember to show all your work to get full credit. Please leave answers in their exact form. This is a closed book test. You may not use a calculator. If you need extra paper let me know.

Last Name, First Name:

Section:

Problem	Possible	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	20	
7	20	
8	10	
Total	100	

1. (10 points) Indicate whether the following expressions make sense (Yes or No).
(a) $|\vec{a}| \cdot \vec{b}$
(b) $(\vec{a} \cdot \vec{b}) \times \vec{c}$
(c) $(\vec{a} \times \vec{b}) \times \vec{c}$
(d) $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$
(e) $\vec{a} /|\vec{a}|$.
2. (10 points) Consider the vectors

$$
\begin{gathered}
\mathbf{a}=\mathbf{i}+\mathbf{j}-2 \mathbf{k}, \\
\mathbf{b}=\mathbf{i}+\mathbf{j} .
\end{gathered}
$$

Compute the following
(a) $\mathbf{a} \cdot \mathbf{b}$.
(b) $\mathbf{a} \times \mathbf{b}$.
(c) $\operatorname{proj}_{\mathbf{b}}(\mathbf{a})$.
3. (10 points) Find a parametrization of the line which is the intersection of the two planes:

$$
\left\{\begin{array}{l}
x-2 y+z=0 \\
x+y-2 z=0
\end{array}\right.
$$

4. (10 points) Find the line tangent to the curve parametrized by

$$
\mathbf{h}(t)=\left(e^{t}+1\right) \mathbf{i}+\left(e^{2 t}+2\right) \mathbf{j}+\left(e^{3 t}+3\right) \mathbf{k}
$$

at the point $(2,3,4)$.
5. (10 points) Graph the function $f(x, y)=\sqrt{1-x^{2}-y^{2}}$ for $0 \leq x^{2}+y^{2} \leq 1$. (Remember that including more information, like traces and labels makes your graph easier to understand.)
6. (20 points) Consider the lines parametrized by

$$
\begin{aligned}
\alpha(t) & =(t, 1-t, 0) \\
\beta(t) & =(t / 2, t / 2,1-t)
\end{aligned}
$$

(a) Find where the lines parametrized by $\alpha(t)$ and $\beta(t)$ intersect.
(b) Determine an equation for the plane containing the lines parametrized by $\alpha(t)$ and $\beta(t)$.
(You may want to do part (b) on the back to give yourself some space.)
7. (20 points) Assume a and b are non-zero constants.
(a) Find a parametrization of a line in \mathbb{R}^{3} passing through the points $(0,0,1)$ and $(a, b, 0)$.
(b) Where does this line intersect the plane $x=1$?
8. (10 points)
(a) State the definition of the unit tangent, unit normal and unit binormal vectors of a curve parametrized by $\mathbf{r}(t)$.
(b) Show that unit tangent and unit normal vectors of $\mathbf{r}(t)$ are perpendicular. (Hint: take the derivative of both sides of $|\mathbf{T}(t)|^{2}=1$. Use the dot product rule for the LHS.)

