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1 Euler’s Formula

Euler’s formula states that eiθ = cos(θ) + i sin(θ) for θ ∈ R. There are some nice things you can do with
this.

1. Compute and draw the 8th roots of unity.

2. Let ζn be a primitive nth root of unity. Show that
∑n−1
j=0 ζ

j
n = 0.

3. (Wallis’ Formula) Using the complex representation of cosine, find a formula for∫ 2π

0

cos(θ)2ndθ.
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2 Quaternion Exercise

This exercise show how nice the complex numbers are and how if one tries to develop a notion of holomor-
phic function in higher for the quaternions. The quaternions are the Division algebra (noncommutative
field) over the reals defined by

H = R⊕ Ri⊕ Rj ⊕ Rk, (∼= R4 as a vector space)

where i,j and k satisfy
ijk = −1 and i2 = j2 = k2 = −1.

The norm on the quaternions is defined as

|a+ bi+ cj + dk|2 = a2 + b2 + c3 + d2,

here a, b, c, d ∈ R.

1. For U ⊂ H open, we say a function f : U → H is holomorphic if

f(q) = lim
h→0

(
(f(q + h)− f(q))h−1

)
.

Show that the only quaternionic holomorphic functions are of the form

f(q) = αq + β.

where α, β ∈ H.
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3 Power and Laurent Series

1. Prove Hadamard’s formula for the radius of convergence of a series
∑∞
n=0 anz

n.

R = lim
n→∞

inf
m≥n
|am|−1/m.

Also show that the series converges absolutely and uniformly, (the differentiability thing is the next
problem).

2. (Analytic implies Holomorphic) Suppose that f(z) =
∑
n≥0 anz

n has a radius of convergence R.

(a) Show
∑
n≥0 nanz

n−1 converges with the same radius of convergence R.

(b) Show d
dz [
∑∞
n=0 anz

n] =
∑
n≥0

d
dz [anz

n] on the disc of convergence.

(Warning: it is not true that for general un(t) → u(t) uniformly that u′n(t) → u′n(t) uniformly!
This is a special fact about power series.)

3. Suppose that f(z) = a0 + a1(z − z0) + a2(z − z0)2 + · · · has a finite radius of convergence. Let
g(z) = an + an+1(z− z0) + an+2(z− z0)2 + · · · . Show that g(z) has the same radius of convergence
as f(z) at z0. (Hint: don’t think about this too much)

4. (Extra Credit, see WW page 59) This is a famous example of non-uniform coonvergence. Show
that the series

∞∑
n=1

zn−1

(1− zn)(1− zn+1)

converges to 1
(z−1)2 when |z| < 1 and 1

z(z−1)2 when |z| > 1

5. If the series converges do some analysis to determine the radius of convergence at the boundary.

(a) Expand 1
1+z2 in a power series around z = 0, find the radius of convergence.

(b) Find the radius of convergence of
∑
n≥0 n!zn.

(c) (New Mexico, Jan 1998) Expand z2+2z−4
z in a power series around z = 1 and find its radius

of convergence.

6. (a) Let B×A ⊂ C×C be an open region with compact closure. Let f : B×A→ C be a function.
Let γ ⊂ A be a C1-curve (so it has finite length). Define F : B → C by

F (z) =

∫
γ

f(z, s)ds.

Assuming ∂f
∂z (z, s) exists and is continuous for all s ∈ γ and all z ∈ B show that

d

dz
[F (z)] =

∫
γ

∂f

∂z
(z, s)ds.

(b) Let Ω ⊂ C be an open set. Let γ : [0, 1]→ Ω be an C1 curve. Let f ∈ hol(Ω) and g ∈ L2(Ω).
Show that

F (z) :=

∫
γ

f(ζ − z)g(ζ)dζ

is holomorphic on Ω.

7. (Whittaker and Watson, page 99) Consider the series

1

2

(
z +

1

z

)
+

∞∑
n=1

(
z − 1

z

)(
1

1 + zn
− 1

1 + zn−1

)
.

Show that this series converges for all values of z with |z| 6= 1. Furthermore, show that

1

2

(
z +

1

z

)
+

∞∑
n=1

(
z − 1

z

)(
1

1 + zn
− 1

1 + zn−1

)
=

{
z, |z| < 1
1
z , |z| > 1
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8. (Whittaker and Watson, 2.8, problem 16) By converting the series

1 +
8q

1− q
+

16q2

1 + q2
+

24q3

1− q3
+ · · ·

(in which |q| < 1), into a double series, show that it is equal to

1 +
8q

(1− q)2
+

8q2

(1 + q2)2
+

8q3

(1− q3)2
+ · · ·
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4 Sequences of Analytic Functions

1. (CUNY, Fall 2005) Let D be the closed unit disc. Let gn be a sequence of analytic functions
converging uniformly to f on D.

(a) Show that g′n converges.

(b) Conclude that f is analytic.

(Hint/Discussion: Normally, taking derivatives makes things numerically behave worse and integra-
tion makes things nicer. What is nice about complex analysis is that integration and differentiation
are the same thing. Here is the hint now: use the integral formula for derivatives to get this done (I
think). A basic philosophical point here is that differentiation of holomorphic functions is actually
easy because it is secretely integration. )

2. Here is a first example of an analytic continuation “from the wild”.

(a) Show that the Riemann Zeta function

ζ(z) :=
∑
n≥1

1

nz

converges for Re z > 1 and is analytic on this domain. (You need to use the “analytic
convergence theorem”, which states that a uniform limit of analytic functions is analytic.
This is just a slight generalization of the previous problem.)

(b) (Whittaker and Watson, 2.8, problem 10)

i. Show that when Re s > 1,

∞∑
n=1

1

ns
=

1

s− 1
+

∞∑
n=1

[
1

ns
+

1

s− 1

(
1

(n+ 1)s−1
− 1

ns−1

)]
ii. Show that the series on the right converges when 0 < Re s < 1. (This means the se-

ries above gives us access to the interesting part of the Riemann-Zeta function. Hint:∫ n+1

n
x−sdx = (n+1−s+1

1−s − n−s+1

1−s )

5 Liouville’s Theorem

The proof of Liouville’s Theorem is basic of taking limits in Cauchy’s formula. There are variants of this
proof which are featured in this problem. The proof of the estimate of the partial sum for a power series
expansion is based of expanding Cauchy’s Integral Formula in a geometric series and then truncating
the series.

1. Prove Liouville’s Theorem: any bounded entire function is constant.

2. (New Mexico, not sure which year) Let f be analytic on C. Assume that max{|f(z)| : |z| = r} ≤
Mrn for a fixed constant M > 0, and a sequence of valued r going to infinity. Show that f is a
polynomial of degree less than or equal to n.

3. (New Mexico, not sure which year) Let f and g be entire functions satisfying |f(z)| ≤ |g(z)| for
|z| ≥ 100. Assume that g is not identically zero. Show that f/g is rational.

4. Prove Goursat’s theorem. Let γ be a simple contour. If f : γ+ → C is holomorphic (but whose
derivative is not necessarily continuous) then∫

γ

f(ζ)dζ = 0.
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5. Let f(z) =
∑∞
n=0 anz

n and let R be the radius of convergence (which is possibly infinite). Let

SN (f)(z) =
∑N
n=0 anz

n. Show that for all r < R and all z ∈ C with |z| < r we have

|f(z)− SN (f)(z)| ≤ M(f, r)

r − |z|
|z|N+1

rN

where M(f, r) = max|z|=r |f(z)|.

6. (UIC, Spring 2016) Describe all entire functions such that f(1/n) = f(−1/n) = 1/n2 for all n ∈ Z.

6 Riemann Extension Theorem

For functions which are analytic in some punctured neighborhood and which are bounded there is a
natural way to extend the function to the point. This again uses the Cauchy integral formula and is
another nice part of complex analysis.

1. (a) Prove the Riemann Extension Theorem: Let U ⊂ C be a region containing a point z0. Let

f ∈ hol(U \ {z0}). If f is bounded on U show that there exists a unique f̃ ∈ hol(U) such that

f̃ |U\{z0} = f ∈ hol(U \ {z0}).
(b) Recall that a morphism of topological spaces f : X → Y is “proper” if and only if the inverse

image of every compact set is compact. Show that an analytic map f : C → C is proper if
and only if for all zj →∞ we have f(zj)→∞.

(c) Show that the only proper maps f : C → C are polynomials. (see page 27 of McMullen, you
need to consider the function g(z) = 1/f(1/z) and show that g(z) = zng0(z) where g0(z) is
analytic and non-zero. This will allows you to conclude |g(z)| > c|z|n for some n which will
allows you to conclude behavious about the growth of f(z) as z →∞. )
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7 Topological Things

I collected a bunch of topological exercises here.
Background:

• Let X and Y be topological spaces. We define the topology on X × Y to be the smallest topology
such that the projection maps πX : X × Y → X and πY : X × Y → Y are continuous (this means
the open sets are generated by sets of the form U × Y or X × V for U ⊂ X open or X × V for
V ⊂ Y open.

• A topological space X is compact if every open cover has a finite subcover. An open cover is just
a union of open sets that equal X.

• A proper map is a morphism of topological spaces such that the inverse image of compact sets is
compact.

Side Remark: The third condition is interesting because Grothendieck realized we can use it to extend
this definition to categories other than topological spaces. In particular to the category of “schemes”.

1. Let U ⊂ C be a connected open set. Consider U ⊂ C with the subspace topology (open subset
of U are the intersection of open subsets of C with U and closed subset are closed subset of C
intersected with U). Show that the only subset of U which are open, closed and nonempty is U
itself.

2. (Green and Krantz, Ch 11) A subset S ⊂ Rn is path connected if for all a, b ∈ S there exists a
continuous γ : [0, 1]→ S such that γ(0) = a and γ(1) = b.

Let U be an open subset of Rn. Show that U is path connected if and only if U is connected.
(Hint: show that the collection of path connected elements is open and closed. Also, you can use
that the only nonempty open and closed subset of a connected open set is the entire set itself. )

3. Show that the following conditions are equivalent for a topological space X:

(a) For all a, b ∈ X there exists open sets U 3 a and V 3 b with U ∩ V = ∅.
(b) For all a, b ∈ X, if every neighborhood of a intersects every neighborhood of b then a = b.

(c) The diagonal map X → X ×X given by x 7→ (x, x) is proper.

(d) The diagonal subset is closed.

If any of these conditions hold we call the topological space separated or hausdorff. (Hint: You
should use the fact that a morphism f is proper if and only if f is closed and the inverse image of
every point is compact.)

8 Harmonic Functions

Let u(x + iy) = u(x, y) be a real valued harmonic function on some region U ⊂ C. A harmonic
conjugate is a function v(x, y) such that f(x+ iy) := u(x, y) + iv(x, y) is holomorphic.

1. Show that u(x, y) = u(z) has a harmonic conjugate locally. (Hint: Use the fundamental theorem

of line integrals v(~P )− v( ~Q) =
∫
C
∇v · d~r if C is a path starting a ~Q and ending at ~P )

2. Find all of the harmonic conjugates of u(x, y) = x3 − 3xy2 + 2x.

3. Let f(z) = u(z) + iv(z) be analytic. Show that the level sets of u(z) and v(z) are orthogonal.

4. (New Mexico, Summer 2000) Show that the pullback of a harmonic function by an holomorphic map
is harmonic (what these words means is explained below). Assume that w = f(z) = u(z) + iv(z) is
holomorphic map f : D → D′ ⊂ C. We consider D in the z-plane to a domain D′ in the w-plane.
If φ is harmonic on D′, show that

Φ(x, y) := φ(u(x, y), v(x, y))
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is harmonic in D.

(The function Φ is called the pullback of φ by f . Sometimes in the literature these you will see the
notation f∗φ for Φ.)

5. (New Mexico, not sure which year) Let f(z) and g(z) be entire functions. Show that if f(g(z))
is a polynomial then both f(z) and g(z) are polynomials. (Hint: this relates to the problem on
properness from the previous homework).

6. Find all entire functions f(z) which satisfy Re f(z) ≤ 2/|z| when |z| > 1. (Hint: Consider e−f(z)

or ef(z). You will need the maximum modulus principle and Liouville’s theorem.)

7. Let u(z) be a real valued harmonic function on a domain D ⊂ C

8. Show that for all Dr(z0) ⊂ D we have

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ)dθ.

(Hint: use a harmonic conjugate)

9. If z0 ∈ D has the property that there exists some r > 0 with Dr(z0) ⊂ D and

u(z0) ≥ u(z)

for all z ∈ Dr(z0) then u(z) is constant. (Hint: Consider a function such that f(z) = u(z) + iv(z)
then consider the maximum of ef(z).)

10. Let u0(θ) be a continuous 2π-periodic function. Let D be a disc of radius r. The Dirichlet boundary
value problem asks to find a function u(x, y) such that:{

∂2u
∂x2 + ∂2u

∂y2 = 0, for (x, y) ∈ D
u(eiθ) = u0(θ),

Show that convolution with the Poisson kernel

Pr(θ) =
1− r2

1− 2r cos(θ) + r2

gives a solution to this problem.

9 Residue Integrals

1. (Whittaker and Watson, 6.24,3) If −1 < z < 3 then∫ ∞
0

xz

(1 + x2)2
dx =

π(1− z)
4 cos(πz/2)

2. (Whittaker and Watson, 6.21, Example 4) Let a > b > 0 be real numbers. Show that∫ 2π

0

dθ

(a+ b cos(θ))2
=

2πa

(a2 − b2)3/2

3. (Whittaker and Watson, 6.23, 2) If a > 0 and b > 0 show that∫ ∞
−∞

x4dx

(a+ bx2)4
=

π

16a3/2b5/2

4. (Whittaker and Watson, 6.22, 1) Show that if a > 0 then∫ ∞
0

cos(x)

x2 + a2
dx =

π

2a
e−a.
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5. (Whittaker and Watson, 6.22) If the Re z > 0 then∫ ∞
0

(e−t − e−tz)dt
t

= log z

6. (Whittaker and Watson, 6.24,2) If 0 ≤ z ≤ 1 and −π < a ≤ π then∫ ∞
0

tz−1

t+ eia
dt =

πei(z−1)a

sin(πz)

7. (Whittaker and Watson 6.24, 1, pg118) If 0 < a < 1 show that∫ ∞
0

xa−1

1 + x
dx = π csc aπ

8. (Whittaker and Watson, 6.24, 4)Show that if −1 < p < 1 and −π < λ < π we have∫ ∞
0

x−pdx

1 + 2x cos(λ) + x2
=

π

sin(pπ)

sin(pλ)

sin(λ)

9. (Whittaker and Watson, 6.21, Example 3) Let n be a positive integer. Show that∫ 2π

0

ecos(θ) cos(nθ − sin θ)dθ =
2π

n!

10 Rouche’s Theorem and Argument Principal

1. (New Mexico, Jan 1997) How many roots does p(z) = z4 + z + 1 have in the first quadrant?

2. (New Mexico, Aug 1993) How many roots does ez − 4zn + 1 = 0 have inside the unit disc |z| < 1?

11 Conformal Maps

1. (New Mexico, Summer 1999) Let H be the upper half complex plane H = {z ∈ C : Im z > 0}. Let
D be the unit disc D = {w : |w| < 1}. Show that the map f(z) = w = (z − i)/(z + i) defines a
bijection H → D.

2. Find the points where w = f(z) is conformal if

(a) w = cos(z)

(b) w = z5 − 5z

(c) w = 1/(z2 + 1)

(d) w =
√
z2 + 1.

3. Find a conformal map of the strip 0 < Re z < 1 onto the unit disc |w| < 1 in such a way that
z = 1/2 goes to w = 0 and z =∞ goes to w = 1.

4. Find the Möbius transformation that maps the left have plane {z ∈ C : Re z < 1} to the unit disc
{w ∈ C : |w| < 1 and has z = 0 and z = 1 as fixed points.

5. Find a conformal map from the following regions onto the unit disc D = {z : |z| < 1}

(a) A = {z : |z| < 2,Arg(z) ∈ (0, π/4)}
(b) B = {z : Re(z) > 2

(c) C = {z : −1 < Re(z) < 1}
(d) D′ = {z : |z| < 1 and Re z < 0}
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6. Let D be the unit disc. Let f : D → D be a conformal map.

(a) If f(0) = 0 show that f(z) = ωz for some ω ∈ ∂D.

(b) If f(0) 6= 0 show that there exists some a ∈ D and ω ∈ ∂D such that

f(z) = ω
z − a
1− az

.

7. (a) Show that PSL2(Z) is generated by S(z) = −1/z and T (z) = z + 1 and hence has the
presentation

〈S, T : S2 = 1, (ST )3 = 1〉.

(b) Show that a fundamental domain1 for this action is the complement of the unit disc in a
vertical strip of length 1 centered around zero in the upper half plane. In other words

Ω = {z : |z| ≥ 1 and − 1/2 ≤ Re(z) ≤ 1/2}

is a fundamental domain for this action.

(c) Show that the following points are fixed points of Ω with the following stabilizers:

i. Stab(i) = {1, S}
ii. Stab(e2πi/2) = {1, ST, (ST )2}
iii. Stab(eπi/3) = {1, TS, (TS)2}
(Note: this exercise gives you an example of an action that is not free.)

12 Elliptic and Modular Functions

1. Show that

℘Λ(z) =
1

z2
+
∑
λ∈Λ∗

[
1

(z − λ)2
− 1

λ2

]
is elliptic with period lattice Λ.

2. For a lattice Λ ⊂ C and m ≥ 3 define Gm = Gm(Λ) =
∑
λ∈Λ\{0} λ

−m.

(a) Show that ℘(z)− 1
z2 =

∑∞
k=1(k + 1)Gk+2z

k.2

(b) Conclude that
℘′(z)2 − 4℘(z)3 + g2℘(z) + g3 = O(z2),

as z → 0, which shows that ℘′(z)2 − 4℘(z)3 + g2℘(z) + g3 is analytic at the origin of C. Here
g2 = 60G4 and g3 = 140G6.

(c) Conclude that ℘′(z)2 − 4℘(z)3 + g2℘(z) + g3 is constant. (Hint: use that elliptic functions
without poles are constant.)

(d) Show the constant in the previous number is zero.

3. The zeros of ℘(z)− c are simple with precisely double zeros at the points congruent to ω1/2, (ω1 +
ω2)/2, ω2/2. (Hint: what are the zeros of ℘′(z) and what does this mean?)

1A fundamental domain for an action Γ×X → X is a closed subset Ω ⊂ X such that

i. X =
⋃
γ∈Γ γ(Ω)

ii. For all γ 6= 1 the set γ(Ω) ∩ Ω has empty interior.

Note that this definition is different from what I had originally said in class. We had our fundamental domains have the
property that γ(Ω) ∩ Ω = ∅. Unfortunately, as this example shows, we can’t always arrange for this.

2You may need to use that you can interchange some series. If fn(z) =
∑
a

(n)
j zj and Aj =

∑∞
n=0 a

(n)
j converges then∑∞

n=0 fn(z) =
∑∞
j=0 Ajz

j .
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13 Riemann Surfaces

This uses some basic properties of Riemann Surfaces.

1. (a) Show that every automorphism of C extends to an automorphism of P1.

(b) Show that Aut(C) := {az+b : a ∈ C× and b ∈ C} (This sometimes called the one dimensional
affine linear group and is denoted AL1(C).).

2. Show that C is not conformally equivalent to D = {z ∈ C : |z| < 1}.

3. Show that Aut(H) = {az+bcz+d : a, b, c, d ∈ R and ad − bc = 1} (This is sometimes called the two
dimensional projective special linear groups with coefficients in R, and is denoted PSL2(R)).

14 Infinite Products

1. Show the Gauss formula for the Gamma function:

Γ(z) = lim
n→∞

nzn!

z(z + 1)(z + 2) · · · (z + n)
.

(Take the definition of the Gamma function to be from its product formula).

2. Verify that F (z) =
∫∞

0
tz−1e−tdt and Γ(z) (via 1/Γ(z) being defined by the product formula)

satify the hypotheses of Weilandt’s Theorem. In particular that F (z) and Γ(z) are bounded when
1 < Re z < 2.

3. Show that
∫ 2π

0
log |1− eiθ|dθ = 0.

4. (New Mexico, Jan 2006) Consider f(z) =
∏∞
n=1(1− z/n3). What is the order of f(z)?

5. Let f(z) =
∑∞
n=0 anz

n be an entire function of finite order ρ. Show that

ρ = lim inf
n→∞

log(n)

log |an|−1/n
.

15 The Big Picard Theorem

1. (a) Prove the Casorati-Weiestrass Theorem: Let f(z) is analytic in a punctured disc of radius R
at the origin. If f(z) has an essential singularity at z = 0 show that for every r with 0 < r < R
the set f(Dr(0) \ {0}) is dense in C. (This is a corollary of Big Picard).

(b) Let p be a polynomial. Show that there exists infinitely many zj such that p(zj) = ezj .

2. The following exercise is intended to introduce you to the j function which plays a role in the proof
of the Big Picard Theorem from class.

Let H be the upper-half plane. A modular form of weight k and level N = 1 is a function
f : H → C such that

f(
az + b

cz + d
) = (cz + d)−2kf(z). (1)

for all

[
a b
c d

]
∈ SL2(Z).

(a) Let Mk denote the collection of modular forms of weight k and level 1. Show that M =⊕
k≥0Mk is a graded ring (i.e. that Mk1Mk2 ⊂Mk1+k2 .

(b) Show that G2k(az+bcz+d ) = (cz + d)2kG2k(z) has weight 2k (Hint: check this on the generators
of SL2(Z).)

Using the first part conclude that the we have the following modular forms of the indicated
weights:
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i. g2(τ) = 60G4(τ), k = 4

ii. g3(τ) = 140G6(τ), k = 6

iii. ∆(τ) = g2(τ)3 − 27g3(τ)2, k = 12

iv. j(τ) = 1728g2(τ)3/∆(τ), k = 0

3. Explain in words the ideas that go into the proof of Montel’s Theorem in Green and Krantz (page
193). How is Arzela-Ascoli used?

4. Let X = C× = C \ {0}. What is the universal cover of X? What is group of deck transformations
for this cover?

5. Use Van Kampen’s theorem to rigorously compute π1(P1 \ {p1, . . . , pr}, z0) for arbitrary r. (Hint:
apply Van Kampen to open sets U, V where U ∩ V is simply connected).
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