Elliptic Functions - For Math 331

Taylor Dupuy

The notes here are from Whittaker and Watson and Knapp.

1 Overview of elliptic functions

As an application of Mittag-Leffler, we gave the following example:
Example 1.1. For τ in the upper-half complex plane H we defined the Weierstrass \wp function:

$$
\wp(z ; \tau)=\frac{1}{z^{2}}+\sum_{(m, n) \neq(0,0)}\left[\frac{1}{(z-n \tau-m)^{2}}-\frac{1}{(n \tau+m)^{2}}\right] .
$$

We remarked that we needed to subtract off the 0th order Taylor approximations of $\frac{1}{(z-n \tau-m)^{2}}$ at $z=0$ to get this series to converge as the sum $\sum_{(n, m) \neq(0,0)} \frac{1}{(z-n \tau+m)^{2}}$ was comparable to the integral $\int_{\mathbf{R}^{2}}|\vec{x}|^{-2} d \vec{x}$ which didn't converge ${ }^{1}$

I drew a picture of the "lattice of points" we were summing over.
The above example is an example of an "elliptic functions". These were an attempt to generalize trig functions. Let $\wp(z)=\wp(z ; \tau)$. It will turn out that

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}
$$

for some g_{2} and g_{3} which depend on $\tau \in H \bigsqcup^{2}$ If we let

$$
\begin{aligned}
& x=\wp(z) \\
& y=\wp^{\prime}(z)
\end{aligned}
$$

then for each $z \in \mathbf{C} \backslash \Lambda_{\tau}$ where $\Lambda_{\tau}=\{m \tau+n: m, n \in \mathbf{Z}\}$ we have

$$
\begin{equation*}
y^{2}=4 x^{3}-g_{2} x-g_{3} \tag{1.2}
\end{equation*}
$$

When g_{2} and g_{3} are real, and we let x and y be real variables, the curve E defined by the equations looks like this:

[^0]** I draw a picture here. **
Such curves are called elliptic curves. We will see more of them later when we talk about Riemann Surfaces.

Anyway, the functions $\wp(z)$ and $\wp^{\prime}(z)$ were developed as an attempt to generalize trig functions. Note the similarities:

$$
\begin{aligned}
& x=\sin (z) \\
& y=\sin ^{\prime}(z)
\end{aligned}
$$

Then for each $z \in \mathbf{C}$ we have

$$
y^{2}=1-x^{2} .
$$

Alternatively, we could have defined trig functions implicitly via

$$
z=\int_{0}^{\sin (z)}\left(1-t^{2}\right)^{1 / 2} d t .
$$

For elliptic curves, one could do something similar for elliptic integrals: we define P in terms of z so that

$$
\begin{equation*}
z=\int_{P}^{\infty}\left(4 t^{3}-g_{2} t-g_{2}\right)^{-1 / 2} d t \tag{1.3}
\end{equation*}
$$

where the integral is over any curve which does not pass through the zeros of $4 t^{3}-g_{2} t-g_{3}$. One can then do implicit differentiation to find

$$
1=-\left(4-P^{3}-g_{2} P-g_{3}\right)^{-1 / 2} \frac{d P}{d z}
$$

which implies

$$
\left(\frac{d P}{d z}\right)^{2}=4 P^{4}-g_{2} P-g_{3} .
$$

One can see that $P=P(z)=\wp(x+\alpha)$ for some constant α would give a solution of (1.3). The integrals of the type in (1.3) are called elliptic integrals. They appear for example when one tries to compute the surface area or the volume of a ellipsoid in three dimensions.

2 Elliptic functions

Definition 2.1. A lattice $\Lambda \subset \mathbf{R}^{n}$ is a free \mathbf{Z}-module of rank n.
In practice this means that

$$
\Lambda=\mathbf{Z} v_{1}+\cdots+\mathbf{Z} v_{n}
$$

where v_{1}, \ldots, v_{n} are linearly independent vectors over \mathbf{R}.

Definition 2.2. Let $\Lambda=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2} \subset \mathbf{C}$ be a lattice. An elliptic function with period lattice Λ is a function $f \in \operatorname{Mer}(\mathbf{C})$ such that

$$
f(z+\lambda)=f(z) \text { for all } \lambda \in \Lambda
$$

We will denote the collection of elliptic functions with period lattice Λ by $\operatorname{Mer}_{\Lambda}(\mathbf{C})$.

Note that $\wp(z ; \tau)=\wp_{\Lambda_{\tau}}(z)$ where $\Lambda_{\tau}=\mathbf{Z}+\mathbf{Z} \tau$.
Example 2.3. Concretely, if $\Lambda=\mathbf{Z}+\mathbf{Z} i$ then

$$
\wp_{\Lambda_{i}}(z)=\wp(z ; i)=\frac{1}{z^{2}}+\sum_{(m, n) \neq(0,0)}\left[\frac{1}{(z-m-n i)^{2}}-\frac{1}{(m+n i)^{2}}\right]
$$

Remark 2.4. The set of elliptic functions for a period lattive, $\operatorname{Mer}_{\Lambda}(\mathbf{C})$ is a field. 3

Exercise 2.5. Let $\Lambda \subset \mathbf{C}$ be a lattice. Let $\Lambda^{*}=\Lambda \backslash\{0\}$. We define the Weierstrass \wp-function for Λ to be

$$
\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right] .
$$

Show that $\wp_{\Lambda}(z) \in \operatorname{Mer}_{\Lambda}(\mathbf{C})$.
Remark 2.6. Exercise 2.5 is not entirely trivial. If $\omega \in \Lambda$ we recommend looking at the two formulas for translates of the input:

$$
\begin{gathered}
\wp_{\Lambda}(z+\omega)=\frac{1}{(z+\omega)^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(z+\omega-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right] \\
\wp_{\Lambda}(z+\omega)=\frac{1}{(z+\omega)^{2}}+\sum_{\lambda \in\left(\Lambda^{*}-\omega\right)}\left[\frac{1}{(z+\lambda)^{2}}-\frac{1}{(\lambda+\omega)^{2}}\right]
\end{gathered}
$$

then rearranging terms (in a convergent way) to show $2 \wp_{\Lambda}(z+\omega)=2 \wp_{\Lambda}(z)$.
Example 2.7. The function

$$
\wp_{\Lambda}^{\prime}(z)=-2 \sum_{\lambda \in \Lambda} \frac{1}{(z-\lambda)^{3}}
$$

is an elliptic function with period lattice Λ. To see this note that for $\omega \in \Lambda$ we have

$$
\begin{aligned}
\wp_{\Lambda}^{\prime}(z+\omega) & =-2 \sum_{\lambda \in \Lambda} \frac{1}{(z-\lambda-\omega)^{3}} \\
& =-2 \sum_{\lambda \in \Lambda+\omega} \frac{1}{(z-\lambda)^{3}} \\
& =-2 \sum_{\lambda \in \Lambda} \frac{1}{(z-\lambda)^{3}}=\wp_{\Lambda}^{\prime}(z)
\end{aligned}
$$

[^1]The last line we just used that Λ was a group and hence that $\omega+\Lambda=\Lambda$ for all $\omega \in \Lambda$.

3 Group actions and lattices

Definition 3.1. Let Γ be a group. Let X be a topological space. A (left) group action will be a map

$$
\rho: \Gamma \times X \rightarrow X
$$

satifying certain axioms. Let's use the notation $\gamma(x):=\rho(\gamma, x)$. The axioms are

1. The maps $X \rightarrow X$ defined by

$$
x \mapsto \gamma(x)
$$

are continuous for each fixed γ and
2. $\left(\gamma_{1}\left(\gamma_{2}(x)\right)\right)=\left(\gamma_{1} \gamma_{2}\right)(x)$,
3. $1_{\Gamma}(x)=x$.

Remark 3.2. The definition above isn't standard everywhere. We are modifying it for our purposes.

1. The last two axioms are just the axioms of a group action. The first axiom imposes continuity.
2. We could have defined a group action to be a group homomorphism $\Gamma \rightarrow \operatorname{Aut}(X)$.
3. One can consider Γ as a topological group (meaning that Γ is a topological space and all of its group operations are continuous with respect to this topology). In this case we take $\Gamma \times X \rightarrow X$ to be a continous map.

Exercise 3.3. Let $\rho: \Gamma \times X \rightarrow X$ be a group action in the sense of Definition 3.1. Show that if we give Γ the discrete topology then ρ is continuous in the sense of Remark 3.2. Item 3.

Definition 3.4. An action $\rho: \Gamma \times X \rightarrow X$ is discretely if for all $x \in X$ there exists some open subset $U \ni x$ such that for all $\gamma \neq 1_{G}$ we have

$$
\gamma(U) \cap U=\emptyset
$$

Definition 3.5. An action $\rho: \Gamma \times X \rightarrow X$ is free provided $\operatorname{Stab}_{\Gamma}(x)$ is trivial for all $x \in X$.

Example 3.6. Let $X=\mathbf{C}$ and $\Gamma=\Lambda$ be a lattice in \mathbf{C}. The action $\rho: \Lambda \times \mathbf{C} \rightarrow$ \mathbf{C} given by $\rho(\lambda, z)=\lambda+z$ is a discrete, free group action.

Definition 3.7. Let a, b, c, d be elements of \mathbf{C} such that $a d-b c \neq 0$. Tranformations $\mathbf{C} \rightarrow \mathbf{C}$ given by

$$
z \mapsto \frac{a z+b}{c z+d}
$$

are called Möbius transformations $\sqrt[4]{4}$
Exercise 3.8. Show that $\mathrm{SL}_{2}(\mathbf{R})$ acts on $H=\{\tau \in \mathbf{C}: \operatorname{Im} \tau>0\}$ via

$$
\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] \cdot z=\frac{a z+b}{c z+d} .
$$

Definition 3.9. Let $\rho: \Gamma \times X \rightarrow X$ be a group action. A true fundamental domain for the action is a connected subset $\Omega \subset X$ such that for all $\gamma \in \Gamma$ not the identity be have

1. $\gamma(\Omega) \cap \Omega=\emptyset$
2. $X=\coprod_{\gamma \in \Gamma} \gamma(\Omega)$.

In class, I had called "true fundamental domains" fundamental domains, but because we will want to consider some domains with stablizers we will modify this.

Definition 3.10. Let $\rho: \Gamma \times X \rightarrow X$ be a group action. A fundamental domain for the action is a connected closed subset $\Omega=\bar{\Omega} \subset X$ such that for all $\gamma \in \Gamma$ not the identity be have

1. $\gamma(\Omega) \cap \Omega$ has empty interior
2. $X=\bigcup_{\gamma \in \Gamma} \gamma(\Omega)$.

Example 3.11. Consider the action of a lattice $\Lambda=\mathbf{Z}+i \mathbf{Z}$ on \mathbf{C}. The set

$$
\Omega=\{x+i y: 0 \leq x<1 \text { and } 0 \leq y<1\}
$$

is a fundamental domain for the action of Λ on \mathbf{C}.
Exercise 3.12. 1. Show that $\mathrm{SL}_{2}(\mathbf{Z})$ acts via Möbius transformations on the upper half plane.
2. Show that a fundamental domain for this action is the complement of the unit disc in a vertical strip of length 1 centered around zero in the upper half plane. In other words

$$
\Omega=A \cup B
$$

where $A=\{z:|z|>1$ and $-1 / 2<\operatorname{Re}(z)<1 / 2\}$ and $B=\{z \in \partial A$: $\operatorname{Re}(z) \leq 0\}$ is a fundamental domain for this action.

[^2]
4 Properties of Elliptic Functions

Let $\Lambda \subset \mathbf{C}$ be a lattice. Note that an elliptic function $f \in \operatorname{Mer}_{\Lambda}(C)$ is completely determined by its restriction to a fundamental domain Ω.
Definition 4.1. Let $f \in \operatorname{Mer}_{\Lambda}(\mathbf{C})$. A fundamental domain $\Omega \subset \mathbf{C}$ for Λ will be called good for f provided

$$
\operatorname{Poles}(f) \cap \partial \Omega=\emptyset
$$

Example 4.2. The fundamental domain $\Omega=\{x+i y: 0 \leq x<1$ and $0 \leq y<$ $1\}$ is not good for $\wp(z ; i)$ since $\wp(z ; i)$ has a pole at 0 which is contained in Ω.

One can check that by perturbing a given fundamental domain by some small $\varepsilon \in \mathbf{C}$ that there exists a good fundamental domain for any given elliptic function f.

Lemma 4.3. Let $\Lambda \subset \mathbf{C}$ be a lattice. Let $f \in \operatorname{Mer}_{\Lambda}(\mathbf{C})$. Let Ω be a good fundamental domain for f.

1. The number of poles of f in Ω is finite.
2. The number of zeros of f in Ω is fite.
3. The sum of the residues of f over a good fundamental domain is zero.
4. Any elliptic function without poles is constant.

Proof. - By meromorphicity, the poles and zeros of f are isolated.

- The last claim follows from Liouville's theorem.
- The third claim requires a small amount of work. Let $\Lambda=\omega_{1} \mathbf{Z}+\omega_{2} \mathbf{Z}$ and consider a good fundamental domain with corners $\alpha, \alpha+\omega_{1}, \alpha+\omega_{1}+$ $\omega_{2}, \alpha+\omega_{2}$.
*** draw a picture ${ }^{* * *}$
We observe that $\partial(\alpha+\Omega)$ is the sum of the edges of the parallelogram. If we let $\gamma_{j}:[0,1] \rightarrow \mathbf{C}$ parametrize these edges we have

$$
\gamma_{1}(t)+\omega_{2}=\gamma_{3}(1-t)
$$

and hence

$$
\begin{aligned}
\int_{-\gamma_{3}} f(z) d z & =\int_{\gamma_{2}+\omega_{2}} f(z) d z \\
& =\int_{0}^{1} f\left(\gamma_{1}(t)+\omega_{2}\right) \gamma^{\prime}(t) d t \\
& =\int_{0}^{1} f\left(\gamma_{1}(t)\right) \gamma_{1}^{\prime}(t) d t \\
& =\int_{\gamma_{1}} f(z) d z
\end{aligned}
$$

Similarly,

$$
\int_{\gamma_{2}} f(z) d z=-\int_{\gamma_{4}} f(z) d z
$$

This implies

$$
\int_{\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}} f(z) d z=0 .
$$

Using these properties we can finally derive our differential equation.
Exercise 4.4. In this exercise we will show

$$
\begin{equation*}
\wp_{\Lambda}^{\prime}(z)^{2}=4 \wp_{\Lambda}(z)^{3}-g_{2}(\Lambda) \wp_{\Lambda}(z)-g_{2}(\Lambda) \tag{4.5}
\end{equation*}
$$

for some constants g_{2} and g_{3}.

1. For a lattice $\Lambda \subset \mathbf{C}$ and $m \geq 3$ define

$$
G_{m}=G_{m}(\Lambda)=\sum_{\lambda \in \Lambda \backslash\{0\}} \lambda^{-m}
$$

5 Show that

$$
\wp(z)-\frac{1}{z^{2}}=\sum_{k=1}^{\infty}(k+1) G_{k+2} z^{k} .
$$

2. Conclude that

$$
\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+g_{2} \wp(z)+g_{2}=O\left(z^{2}\right),
$$

as $z \rightarrow 0$, which shows that $\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+g_{2} \wp(z)+g_{2}$ is analytic at the origin of \mathbf{C}.
3. Conclude that $\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+g_{2} \wp(z)+g_{2}$ is constant ${ }^{6}$
4. Show the constant in the previous number is zero.

5 Characterization of Elliptic Functions

We will not prove every elliptic function is a combination of $\wp_{\Lambda}(z)$ and $\wp_{\Lambda}^{\prime}(z)$. That is

$$
\operatorname{Mer}_{\Lambda}(\mathbf{C})=\mathbf{C}\left(\wp_{\Lambda}, \wp_{\Lambda}^{\prime}\right)
$$

The approximate strategy is to interpolate a function with the number of zeros and poles.

[^3]Lemma 5.1. If $f(z)=f(-z)$ is a meromorphic, then the order of $\left.\operatorname{ord}_{z=0}(f(z))\right)$ is even.

Proof. Write

$$
f(z)=\sum_{n \in \mathbf{Z}} a_{n} z^{n}
$$

Writing out the equation $f(z)=f(-z)$ and using the fact that $\left\{z^{n}: n \in \mathbf{Z}\right\}$ is a basis for the vector space of Laurent series gives the result.

Lemma 5.2 (Main Lemma). Let $\Lambda \subset \mathbf{C}$ be a lattice. Let $f(z) \in \operatorname{Mer}_{\Lambda}(\mathbf{C})$. If $f(z)=f(-z)$ then $f(z) \in \mathbf{C}\left(\wp_{\Lambda}(z)\right)$.

We first prove a series of reductions.
Lemma 5.3. Let $f(-z)=f(z)$. Let $f(z) \in \operatorname{Mer}_{\Lambda}(\mathbf{C})$ for some lattice $\Lambda \subset \mathbf{C}$. In 5.2 we can assume without loss of generality that $f(z)$ has no zeros or poles on Λ.

Proof. We first show that we can assume there are no poles. If $f(z)$ has a pole in Λ by translation we can reduce to examinine the case where the pole is at zero and has order $2 m$. If $f(z)$ has a pole of order 2 then these exist some c such that

$$
\widetilde{f}(z):=f(z)-c \wp(z)
$$

no longer has a pole.
Inductive step: if the pole is order $2 m$ for $m>1$ then there exists some c such that

$$
\widetilde{f}(z)=f(z)-c \wp(z)^{m}
$$

has a pole of order $2 m-2$ and we can reduce to the previous case.
Suppose now $f(z)$ has no poles in Λ but has some zeros. If we take

$$
\widetilde{f}(z)=f(z)-c
$$

where c is non-zero then \tilde{f} no longer has a zero in Λ and we are done.
We now show how to reduce the number of zeros and poles we need to consider for the interpolation prolem. Let $\Lambda=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ and let Ω_{0} a fundamental parallelogram containing 0 . we define $*: \Omega_{0} \rightarrow \Omega_{0}$ by

$$
a^{*}= \begin{cases}\omega_{1}+\omega_{2}-a, & a \text { not on boundary } \\ \omega_{1}-a, & a \text { on } \omega_{1} \text {-line } \\ \omega_{2}-a, & a \text { on } \omega_{2} \text {-line }\end{cases}
$$

Identifying any other fundamental domain with Ω_{0} allows us to define a similar operation on any fundamental domain (in fact, this operation is really defined on \mathbf{C} / Λ.)

Exercise 5.4. The zeros of $\wp(z)-c$ are simple with precisely double zeros at the points congruent to $\omega_{1} / 2,\left(\omega_{1}+\omega_{2}\right) / 2, \omega_{2} / 2$. (Hint: one need to check the zeros of $\wp^{\prime}(z)$.)

Remark 5.5 . THe double zeros are precisely the points fixed under $a \mapsto a^{*}$.
Lemma 5.6. Let $f \in \operatorname{Mer}_{\Lambda}(\mathbf{C})$. If $f(a)=0$ then $f\left(a^{*}\right)=0$.
Proof. If $f(a)=f(-a)=f\left(\omega_{1}+\omega_{2}-a\right)=0$. The proof is similar for the boundary cases.

The above lemma and exercise imply that $\wp(z)-\wp(a)$ has roots at a and a^{*} with multiplicity one except in the special cases.

We can now prove Lemma 5.2
Proof of Lemma 5.2. The $\operatorname{Zeros}(f) \cap \Omega$ consists of points a_{1}, \ldots, a_{n} and points congruent to $-a_{1}, \ldots,-a_{n}$. The set $\operatorname{Poles}(f) \cap \Omega$ consist of points b_{1}, \ldots, b_{n} and points congruent to $-b_{1}, \ldots,-b_{n}$.

Forming the product with the appropriate multiplicities we have

$$
\frac{1}{f(z)} \prod_{j=1}^{n} \frac{\left(\wp(z)-\wp\left(a_{j}\right)\right)^{m_{j}}}{\prod_{j=1}^{l}\left(\wp(z)-\wp\left(b_{j}\right)\right)^{n_{j}}} \in \operatorname{Mer}_{\Lambda}(\mathbf{C})
$$

Since this function has no poles it must be constant which proves our result.
Theorem 5.7. Let $\Lambda \subset \mathbf{C}$ be a lattice. We have

$$
\operatorname{Mer}_{\Lambda}(\mathbf{C})=\mathbf{C}\left(\wp_{\Lambda}(z), \wp_{\Lambda}^{\prime}(z)\right) .
$$

Proof. Suppose $f(z) \in \operatorname{Mer}_{\Lambda}(\mathbf{C})$. In this proof we will use the shorthand $\wp_{\Lambda}(z)=\wp(z)$ and $\wp_{\Lambda}^{\prime}(z)=\wp^{\prime}(z)$. The functions

$$
f(z)+f(-z), \frac{f(z)-f(-z)}{\wp^{\prime}(z)}
$$

are even functions in $\operatorname{Mer}_{\Lambda}(\mathbf{C})$. Hence, by Lemma 5.2, there exists rational functions $A(z), B(z) \in \mathbf{C}(z)$ such that

$$
\begin{aligned}
A(\wp(z)) & =f(z)+f(-z) \\
B(\wp(z)) & =\frac{f(z)-f(-z)}{\wp^{\prime}(z)}
\end{aligned}
$$

This implies that

$$
f(z)=A(\wp(z))+B(\wp(z)) \wp^{\prime}(z) .
$$

[^0]: ${ }^{1}$ The p-test in higher dimensions has $1 /|\vec{x}|^{n+\varepsilon}$ integrable in \mathbf{R}^{n}
 ${ }^{2}$ These equations have been super influential in Mathematics. For example, the study of the so-called Painleve equations were motivated by generalizing these equations.

[^1]: ${ }^{3}$ It turns out that this will be the "field of functions" of an "elliptic curve". These are the Riemann surfaces we alluded to in the previous section.

[^2]: ${ }^{4}$ The domain and range of these transformations are naturally a compactified version of the complex numbers, so we will omit discussion on the domain and range of these maps for a later times

[^3]: ${ }^{5} G_{2 m}(\tau):=G_{2 m}\left(\Lambda_{\tau}\right)$ is
 ${ }^{6}$ Hint: use 4.3

