Elliptic Functions — For Math 331

Taylor Dupuy

The notes here are from Whittaker and Watson and Knapp.

1 Overview of elliptic functions

As an application of Mittag-Leffler, we gave the following example:

Example 1.1. For 7 in the upper-half complex plane H we defined the Weier-
strass p function:

1 1 1
p(Z,T) = 2 + Z |: 2 2
z (2 (0.0) (z=nT—m) (nT+m)

We remarked that we needed to subtract off the Oth order Taylor approxi-
mations of m at z = 0 to get this series to converge as the sum

2 (nm)£(0,0) m was comparable to the integral [, |Z]~2dZ which didn’t
converge
I drew a picture of the “lattice of points” we were summing over.

The above example is an example of an “elliptic functions”. These were an
attempt to generalize trig functions. Let p(z) = p(z; 7). It will turn out that

0’ (2)* = 4p(2)° — g2p(2) — g3,

for some g and g3 which depend on 7 € H EI If we let

z = p(2)
= ¢(2)
then for each z € C\ A; where A, = {m7 +n:m,n € Z} we have
y? = 42® — gox — gs. (1.2)

When ¢, and g3 are real, and we let x and y be real variables, the curve F
defined by the equations looks like this:

IThe p-test in higher dimensions has 1/|Z|"*¢ integrable in R™
2These equations have been super influential in Mathematics. For example, the study of
the so-called Painleve equations were motivated by generalizing these equations.



** T draw a picture here. **

Such curves are called elliptic curves. We will see more of them later when
we talk about Riemann Surfaces.

Anyway, the functions p(z) and p’(z) were developed as an attempt to gen-
eralize trig functions. Note the similarities:

x = sin(z)

y = sin'(z)
Then for each 2 € C we have

y?=1-— 22

Alternatively, we could have defined trig functions implicitly via

sin(z)
z= / (1—t)Y2dt.
0

For elliptic curves, one could do something similar for elliptic integrals: we
define P in terms of z so that

z= / (4t% — gat — go) "1/ 2dt (1.3)
P

where the integral is over any curve which does not pass through the zeros of
4t3 — got — g3. One can then do implicit differentiation to find

P
1= (4P~ gP gy 290
dz
which implies
dP 4 4
—)* =4P% — g2 P — g3.
(dz) g2 g3

One can see that P = P(z) = p(x+«) for some constant o would give a solution
of . The integrals of the type in are called elliptic integrals. They
appear for example when one tries to compute the surface area or the volume
of a ellipsoid in three dimensions.

2 Elliptic functions

Definition 2.1. A lattice A C R" is a free Z-module of rank n.

In practice this means that
AN=Zv +- -+ Zv,

where v1,...,v, are linearly independent vectors over R.



Definition 2.2. Let A = Zw; + Zws C C be a lattice. An elliptic function
with period lattice A is a function f € Mer(C) such that

fz4+X) = f(2) for all A € A.

We will denote the collection of elliptic functions with period lattice A by
Mer, (C).

Note that p(z;7) = pa, (z) where A, =Z + Zr.
Example 2.3. Concretely, if A = Z + Zi then

mi(Z):p(Z;i):Zi2+ > [ ! S ]

() E(0.0) (z=m—ni)2 (m+ni)?

Remark 2.4. The set of elliptic functions for a period lattive, Mers (C) is a field.

Exercise 2.5. Let A C C be a lattice. Let A* = A\ {0}. We define the
Weierstrass p-function for A to be

1 1 1
=5+ 3 [ )
22 ferd (z—XA)?2 A2
Show that pa(z) € Mery (C).

Remark 2.6. Exercise [2.5]is not entirely trivial. If w € A we recommend looking
at the two formulas for translates of the input:

1 1 1
e+ = mgp+ 3 e

1 1 1
pA(Z-i-OJ) = (z + w)? +)\€(Az*w) |:(Z+)\)2 B ()\+w)2:|

then rearranging terms (in a convergent way) to show 204 (z + w) = 2pa(2).

Example 2.7. The function

is an elliptic function with period lattice A. To see this note that for w € A we
have

Prztw) = —2Zm

31t turns out that this will be the “field of functions” of an “elliptic curve”. These are the
Riemann surfaces we alluded to in the previous section.



The last line we just used that A was a group and hence that w + A = A for all
w e A.

3 Group actions and lattices

Definition 3.1. Let I" be a group. Let X be a topological space. A (left)
group action will be a map

pTxX > X

satifying certain axioms. Let’s use the notation v(z) := p(v,«). The axioms are
1. The maps X — X defined by
> (x)
are continuous for each fixed v and
2. (m(e(@))) = (nre)(@),
3. Ip(z) = =.

Remark 3.2. The definition above isn’t standard everywhere. We are modifying
it for our purposes.

1. The last two axioms are just the axioms of a group action. The first axiom
imposes continuity.

2. We could have defined a group action to be a group homomorphism
I — Aut(X).

3. One can consider I as a topological group (meaning that I is a topological
space and all of its group operations are continuous with respect to this
topology). In this case we take I' x X — X to be a continous map.

Exercise 3.3. Let p : 'xX — X be a group action in the sense of Definition[3.1]
Show that if we give I' the discrete topology then p is continuous in the sense

of Remark Item

Definition 3.4. An action p: ' x X — X is discretely if for all x € X there
exists some open subset U 3 = such that for all v # 14 we have

~FU)NU = 0.

Definition 3.5. An action p: ' x X — X is free provided Stabr(x) is trivial
for all z € X.

Example 3.6. Let X = C and I' = A be a lattice in C. The action p: AxC —
C given by p(\, z) = A+ z is a discrete, free group action.



Definition 3.7. Let a,b, ¢, d be elements of C such that ad — bc # 0. Tranfor-

mations C — C given by
az+b

cz+d

are called Mébius transformations[

Exercise 3.8. Show that SLy(R) acts on H = {r € C: Im7 > 0} via

a b _az+b
c d T ez+d

Definition 3.9. Let p: ' x X — X be a group action. A true fundamental
domain for the action is a connected subset {2 C X such that for all v € I" not
the identity be have

Ly(Q)nNnQ=10

2. X = I1er v().

In class, I had called “true fundamental domains” fundamental domains, but
because we will want to consider some domains with stablizers we will modify
this.

Definition 3.10. Let p : I' x X — X be a group action. A fundamental
domain for the action is a connected closed subset Q = 2 C X such that for
all v € I' not the identity be have

1. v(©) N 2 has empty interior

2. X = Uwel“ 7(92).

Example 3.11. Consider the action of a lattice A = Z + ¢Z on C. The set
O={r+iwy:0<zr<land0<y<1}
is a fundamental domain for the action of A on C.

Exercise 3.12. 1. Show that SLs(Z) acts via Mobius transformations on
the upper half plane.

2. Show that a fundamental domain for this action is the complement of the
unit disc in a vertical strip of length 1 centered around zero in the upper
half plane. In other words

QO=AUB

where A = {z : |2] > 1and —1/2 < Re(z) < 1/2} and B = {z € 0A :
Re(z) < 0} is a fundamental domain for this action.

4The domain and range of these transformations are naturally a compactified version of
the complex numbers, so we will omit discussion on the domain and range of these maps for
a later times



4 Properties of Elliptic Functions

Let A C C be alattice. Note that an elliptic function f € Mery (C) is completely
determined by its restriction to a fundamental domain Q.

Definition 4.1. Let f € Merpy(C). A fundamental domain 2 C C for A will
be called good for f provided

Poles(f) N o2 = 0.

Example 4.2. The fundamental domain Q@ = {z +iy: 0<z<land 0 <y <
1} is not good for p(z;14) since p(z;4) has a pole at 0 which is contained in €.

One can check that by perturbing a given fundamental domain by some
small € € C that there exists a good fundamental domain for any given elliptic
function f.

Lemma 4.3. Let A C C be a lattice. Let f € Mery(C). Let Q be a good
fundamental domain for f.

1. The number of poles of f in Q is finite.
2. The number of zeros of f in § is fiite.
3. The sum of the residues of f over a good fundamental domain is zero.
4. Any elliptic function without poles is constant.
Proof. e By meromorphicity, the poles and zeros of f are isolated.
e The last claim follows from Liouville’s theorem.

e The third claim requires a small amount of work. Let A = w1Z + woZ
and consider a good fundamental domain with corners o, a + wq, @ +wy +
wa, 0 + way.

*** draw a picture ***

We observe that 9(a + Q) is the sum of the edges of the parallelogram. If
we let 7; : [0,1] — C parametrize these edges we have

Y1(t) + w2 =73(1 = 1),

and hence

[ fas = L S

/O FOn(t) + wa)y (1)t

/0 FOn () (bt
f

(z)dz

Y1



Similarly,

/ﬂ f(2)dz = — L F(2)dz.

/ f(z)dz =0.
Y1+v2+v3+va

This implies

Using these properties we can finally derive our differential equation.

Exercise 4.4. In this exercise we will show

pa(2)? = 4pa(2)° — g2(A)pa(2) — g2(A) (4.5)
for some constants g and gs.

1. For a lattice A C C and m > 3 define

Gm=GCGn(A)= > A

AEA\{0}
Bl Show that
1 o0
pz) = 5 = ;(k +1)Gri2z".

2. Conclude that

o (2)? = 4p(2)% + g20(2) + g2 = O(z°),

as z — 0, which shows that ¢/(2)? — 4p(2)% + gop(2) + go is analytic at
the origin of C.

3. Conclude that ©'(2)? — 4p(2)% + g2p(2) + g2 is constantﬂ

4. Show the constant in the previous number is zero.

5 Characterization of Elliptic Functions

We will not prove every elliptic function is a combination of ps(z) and @/ (2).
That is

Mer, (C) = C(pa, ©)-

The approximate strategy is to interpolate a function with the number of zeros
and poles.

5Gom (1) = Gam(Ar) is
SHint: use (4.3



Lemma 5.1. If f(z) = f(—2) is a meromorphic, then the order of ord,—o(f(2)))
1S even.

Proof. Write

f(z) = Z anz".

neZz
Writing out the equation f(z) = f(—z) and using the fact that {z" : n € Z} is
a basis for the vector space of Laurent series gives the result. O

Lemma 5.2 (Main Lemma). Let A C C be a lattice. Let f(z) € Merpa(C). If
f(2) = f(=2) then f(z) € C(pa(2))-

We first prove a series of reductions.

Lemma 5.3. Let f(—2) = f(2). Let f(z) € Merp(C) for some lattice A C C.
In we can assume without loss of generality that f(z) has no zeros or poles
on A.

Proof. We first show that we can assume there are no poles. If f(z) has a pole
in A by translation we can reduce to examinine the case where the pole is at
zero and has order 2m. If f(z) has a pole of order 2 then these exist some ¢
such that

f(2) = f(2) — cp(2)
no longer has a pole.
Inductive step: if the pole is order 2m for m > 1 then there exists some ¢
such that

f(z) = f(z) = cp(z)™

has a pole of order 2m — 2 and we can reduce to the previous case.
Suppose now f(z) has no poles in A but has some zeros. If we take

f(z)=f(z)—c
where c is non-zero then fvno longer has a zero in A and we are done. O

We now show how to reduce the number of zeros and poles we need to con-
sider for the interpolation prolem. Let A = Zw; 4+ Zws and let 2y a fundamental
parallelogram containing 0. we define * : Qy — Q¢ by

w1 +ws —a, a not on boundary

a* =< w —a, a on wi-line

w2 — a, a on wsy-line

Identifying any other fundamental domain with 2y allows us to define a similar

operation on any fundamental domain (in fact, this operation is really defined
on C/A.)



Exercise 5.4. The zeros of p(z) — ¢ are simple with precisely double zeros at
the points congruent to wy/2, (w1 + w2)/2,w2/2. (Hint: one need to check the
zeros of ©'(2).)

Remark 5.5. THe double zeros are precisely the points fixed under a — a*.
Lemma 5.6. Let f € Merp(C). If f(a) =0 then f(a*) =0.

Proof. It f(a) = f(—a) = f(w1 + w2 —a) = 0. The proof is similar for the
boundary cases. O

The above lemma and exercise imply that p(z) — g(a) has roots at a and a*
with multiplicity one except in the special cases.
We can now prove Lemma [5.2]

Proof of Lemma[5.2 The Zeros(f) N consists of points a, ..., a, and points
congruent to —ay, ..., —a,. The set Poles(f) N consist of points by, ..., b, and
points congruent to —by, ..., —b,.

Forming the product with the appropriate multiplicities we have

1y (p(2) = p(ay)™
o L e — o

Since this function has no poles it must be constant which proves our result. [

€ Mery (C).

Theorem 5.7. Let A C C be a lattice. We have

Mera (C) = C(pa(2), i (2))-
Proof. Suppose f(z) € Mery(C). In this proof we will use the shorthand
pa(z) = p(z) and @) (2) = (). The functions

f(Z) + f(—Z),

are even functions in Mers(C). Hence, by Lemma there exists rational
functions A(z), B(z) € C(z) such that

Alp(z)) = [f(z)+ f(=2)
f(z) = f(=2)
' (2)

This implies that
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