
Elliptic Functions — For Math 331

Taylor Dupuy

The notes here are from Whittaker and Watson and Knapp.

1 Overview of elliptic functions

As an application of Mittag-Leffler, we gave the following example:

Example 1.1. For τ in the upper-half complex plane H we defined the Weier-
strass ℘ function:

℘(z; τ) =
1

z2
+

∑
(m,n)6=(0,0)

[
1

(z − nτ −m)2
− 1

(nτ +m)2

]
.

We remarked that we needed to subtract off the 0th order Taylor approxi-
mations of 1

(z−nτ−m)2 at z = 0 to get this series to converge as the sum∑
(n,m) 6=(0,0)

1
(z−nτ+m)2 was comparable to the integral

∫
R2 |~x|−2d~x which didn’t

converge.1

I drew a picture of the “lattice of points” we were summing over.

The above example is an example of an “elliptic functions”. These were an
attempt to generalize trig functions. Let ℘(z) = ℘(z; τ). It will turn out that

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

for some g2 and g3 which depend on τ ∈ H.2 If we let

x = ℘(z)

y = ℘′(z)

then for each z ∈ C \ Λτ where Λτ = {mτ + n : m,n ∈ Z} we have

y2 = 4x3 − g2x− g3. (1.2)

When g2 and g3 are real, and we let x and y be real variables, the curve E
defined by the equations looks like this:

1The p-test in higher dimensions has 1/|~x|n+ε integrable in Rn

2These equations have been super influential in Mathematics. For example, the study of
the so-called Painleve equations were motivated by generalizing these equations.
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** I draw a picture here. **
Such curves are called elliptic curves. We will see more of them later when

we talk about Riemann Surfaces.
Anyway, the functions ℘(z) and ℘′(z) were developed as an attempt to gen-

eralize trig functions. Note the similarities:

x = sin(z)

y = sin′(z)

Then for each z ∈ C we have

y2 = 1− x2.

Alternatively, we could have defined trig functions implicitly via

z =

∫ sin(z)

0

(1− t2)1/2dt.

For elliptic curves, one could do something similar for elliptic integrals: we
define P in terms of z so that

z =

∫ ∞
P

(4t3 − g2t− g2)−1/2dt (1.3)

where the integral is over any curve which does not pass through the zeros of
4t3 − g2t− g3. One can then do implicit differentiation to find

1 = −(4− P 3 − g2P − g3)−1/2 dP

dz

which implies

(
dP

dz
)2 = 4P 4 − g2P − g3.

One can see that P = P (z) = ℘(x+α) for some constant α would give a solution
of (1.3). The integrals of the type in (1.3) are called elliptic integrals. They
appear for example when one tries to compute the surface area or the volume
of a ellipsoid in three dimensions.

2 Elliptic functions

Definition 2.1. A lattice Λ ⊂ Rn is a free Z-module of rank n.

In practice this means that

Λ = Zv1 + · · ·+ Zvn

where v1, . . . , vn are linearly independent vectors over R.
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Definition 2.2. Let Λ = Zω1 + Zω2 ⊂ C be a lattice. An elliptic function
with period lattice Λ is a function f ∈ Mer(C) such that

f(z + λ) = f(z) for all λ ∈ Λ.

We will denote the collection of elliptic functions with period lattice Λ by
MerΛ(C).

Note that ℘(z; τ) = ℘Λτ (z) where Λτ = Z + Zτ .

Example 2.3. Concretely, if Λ = Z + Zi then

℘Λi(z) = ℘(z; i) =
1

z2
+

∑
(m,n)6=(0,0)

[
1

(z −m− ni)2
− 1

(m+ ni)2

]
.

Remark 2.4. The set of elliptic functions for a period lattive, MerΛ(C) is a field.
3

Exercise 2.5. Let Λ ⊂ C be a lattice. Let Λ∗ = Λ \ {0}. We define the
Weierstrass ℘-function for Λ to be

℘Λ(z) =
1

z2
+
∑
λ∈Λ∗

[
1

(z − λ)2
− 1

λ2

]
.

Show that ℘Λ(z) ∈ MerΛ(C).

Remark 2.6. Exercise 2.5 is not entirely trivial. If ω ∈ Λ we recommend looking
at the two formulas for translates of the input:

℘Λ(z + ω) =
1

(z + ω)2
+
∑
λ∈Λ∗

[
1

(z + ω − λ)2
− 1

λ2

]

℘Λ(z + ω) =
1

(z + ω)2
+

∑
λ∈(Λ∗−ω)

[
1

(z + λ)2
− 1

(λ+ ω)2

]
then rearranging terms (in a convergent way) to show 2℘Λ(z + ω) = 2℘Λ(z).

Example 2.7. The function

℘′Λ(z) = −2
∑
λ∈Λ

1

(z − λ)3

is an elliptic function with period lattice Λ. To see this note that for ω ∈ Λ we
have

℘′Λ(z + ω) = −2
∑
λ∈Λ

1

(z − λ− ω)3

= −2
∑

λ∈Λ+ω

1

(z − λ)3

= −2
∑
λ∈Λ

1

(z − λ)3
= ℘′Λ(z).

3It turns out that this will be the “field of functions” of an “elliptic curve”. These are the
Riemann surfaces we alluded to in the previous section.
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The last line we just used that Λ was a group and hence that ω+ Λ = Λ for all
ω ∈ Λ.

3 Group actions and lattices

Definition 3.1. Let Γ be a group. Let X be a topological space. A (left)
group action will be a map

ρ : Γ×X → X

satifying certain axioms. Let’s use the notation γ(x) := ρ(γ, x). The axioms are

1. The maps X → X defined by

x 7→ γ(x)

are continuous for each fixed γ and

2. (γ1(γ2(x))) = (γ1γ2)(x),

3. 1Γ(x) = x.

Remark 3.2. The definition above isn’t standard everywhere. We are modifying
it for our purposes.

1. The last two axioms are just the axioms of a group action. The first axiom
imposes continuity.

2. We could have defined a group action to be a group homomorphism
Γ→ Aut(X).

3. One can consider Γ as a topological group (meaning that Γ is a topological
space and all of its group operations are continuous with respect to this
topology). In this case we take Γ×X → X to be a continous map.

Exercise 3.3. Let ρ : Γ×X → X be a group action in the sense of Definition 3.1.
Show that if we give Γ the discrete topology then ρ is continuous in the sense
of Remark 3.2, Item 3.

Definition 3.4. An action ρ : Γ×X → X is discretely if for all x ∈ X there
exists some open subset U 3 x such that for all γ 6= 1G we have

γ(U) ∩ U = ∅.

Definition 3.5. An action ρ : Γ×X → X is free provided StabΓ(x) is trivial
for all x ∈ X.

Example 3.6. Let X = C and Γ = Λ be a lattice in C. The action ρ : Λ×C→
C given by ρ(λ, z) = λ+ z is a discrete, free group action.
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Definition 3.7. Let a, b, c, d be elements of C such that ad− bc 6= 0. Tranfor-
mations C→ C given by

z 7→ az + b

cz + d

are called Möbius transformations.4.

Exercise 3.8. Show that SL2(R) acts on H = {τ ∈ C : Im τ > 0} via[
a b
c d

]
· z =

az + b

cz + d
.

Definition 3.9. Let ρ : Γ×X → X be a group action. A true fundamental
domain for the action is a connected subset Ω ⊂ X such that for all γ ∈ Γ not
the identity be have

1. γ(Ω) ∩ Ω = ∅

2. X =
∐
γ∈Γ γ(Ω).

In class, I had called “true fundamental domains” fundamental domains, but
because we will want to consider some domains with stablizers we will modify
this.

Definition 3.10. Let ρ : Γ × X → X be a group action. A fundamental
domain for the action is a connected closed subset Ω = Ω ⊂ X such that for
all γ ∈ Γ not the identity be have

1. γ(Ω) ∩ Ω has empty interior

2. X =
⋃
γ∈Γ γ(Ω).

Example 3.11. Consider the action of a lattice Λ = Z + iZ on C. The set

Ω = {x+ iy : 0 ≤ x < 1 and 0 ≤ y < 1}

is a fundamental domain for the action of Λ on C.

Exercise 3.12. 1. Show that SL2(Z) acts via Möbius transformations on
the upper half plane.

2. Show that a fundamental domain for this action is the complement of the
unit disc in a vertical strip of length 1 centered around zero in the upper
half plane. In other words

Ω = A ∪B

where A = {z : |z| > 1 and − 1/2 < Re(z) < 1/2} and B = {z ∈ ∂A :
Re(z) ≤ 0} is a fundamental domain for this action.

4The domain and range of these transformations are naturally a compactified version of
the complex numbers, so we will omit discussion on the domain and range of these maps for
a later times
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4 Properties of Elliptic Functions

Let Λ ⊂ C be a lattice. Note that an elliptic function f ∈ MerΛ(C) is completely
determined by its restriction to a fundamental domain Ω.

Definition 4.1. Let f ∈ MerΛ(C). A fundamental domain Ω ⊂ C for Λ will
be called good for f provided

Poles(f) ∩ ∂Ω = ∅.

Example 4.2. The fundamental domain Ω = {x+ iy : 0 ≤ x < 1 and 0 ≤ y <
1} is not good for ℘(z; i) since ℘(z; i) has a pole at 0 which is contained in Ω.

One can check that by perturbing a given fundamental domain by some
small ε ∈ C that there exists a good fundamental domain for any given elliptic
function f .

Lemma 4.3. Let Λ ⊂ C be a lattice. Let f ∈ MerΛ(C). Let Ω be a good
fundamental domain for f .

1. The number of poles of f in Ω is finite.

2. The number of zeros of f in Ω is fiite.

3. The sum of the residues of f over a good fundamental domain is zero.

4. Any elliptic function without poles is constant.

Proof. • By meromorphicity, the poles and zeros of f are isolated.

• The last claim follows from Liouville’s theorem.

• The third claim requires a small amount of work. Let Λ = ω1Z + ω2Z
and consider a good fundamental domain with corners α, α+ω1, α+ω1 +
ω2, α+ ω2.

*** draw a picture ***

We observe that ∂(α+ Ω) is the sum of the edges of the parallelogram. If
we let γj : [0, 1]→ C parametrize these edges we have

γ1(t) + ω2 = γ3(1− t),

and hence ∫
−γ3

f(z)dz =

∫
γ2+ω2

f(z)dz

=

∫ 1

0

f(γ1(t) + ω2)γ′(t)dt

=

∫ 1

0

f(γ1(t))γ′1(t)dt

=

∫
γ1

f(z)dz
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Similarly, ∫
γ2

f(z)dz = −
∫
γ4

f(z)dz.

This implies ∫
γ1+γ2+γ3+γ4

f(z)dz = 0.

Using these properties we can finally derive our differential equation.

Exercise 4.4. In this exercise we will show

℘′Λ(z)2 = 4℘Λ(z)3 − g2(Λ)℘Λ(z)− g2(Λ) (4.5)

for some constants g2 and g3.

1. For a lattice Λ ⊂ C and m ≥ 3 define

Gm = Gm(Λ) =
∑

λ∈Λ\{0}

λ−m.

5 Show that

℘(z)− 1

z2
=

∞∑
k=1

(k + 1)Gk+2z
k.

2. Conclude that

℘′(z)2 − 4℘(z)3 + g2℘(z) + g2 = O(z2),

as z → 0, which shows that ℘′(z)2 − 4℘(z)3 + g2℘(z) + g2 is analytic at
the origin of C.

3. Conclude that ℘′(z)2 − 4℘(z)3 + g2℘(z) + g2 is constant.6

4. Show the constant in the previous number is zero.

5 Characterization of Elliptic Functions

We will not prove every elliptic function is a combination of ℘Λ(z) and ℘′Λ(z).
That is

MerΛ(C) = C(℘Λ, ℘
′
Λ).

The approximate strategy is to interpolate a function with the number of zeros
and poles.

5G2m(τ) := G2m(Λτ ) is
6Hint: use 4.3
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Lemma 5.1. If f(z) = f(−z) is a meromorphic, then the order of ordz=0(f(z)))
is even.

Proof. Write

f(z) =
∑
n∈Z

anz
n.

Writing out the equation f(z) = f(−z) and using the fact that {zn : n ∈ Z} is
a basis for the vector space of Laurent series gives the result.

Lemma 5.2 (Main Lemma). Let Λ ⊂ C be a lattice. Let f(z) ∈ MerΛ(C). If
f(z) = f(−z) then f(z) ∈ C(℘Λ(z)).

We first prove a series of reductions.

Lemma 5.3. Let f(−z) = f(z). Let f(z) ∈ MerΛ(C) for some lattice Λ ⊂ C.
In 5.2 we can assume without loss of generality that f(z) has no zeros or poles
on Λ.

Proof. We first show that we can assume there are no poles. If f(z) has a pole
in Λ by translation we can reduce to examinine the case where the pole is at
zero and has order 2m. If f(z) has a pole of order 2 then these exist some c
such that

f̃(z) := f(z)− c℘(z)

no longer has a pole.
Inductive step: if the pole is order 2m for m > 1 then there exists some c

such that
f̃(z) = f(z)− c℘(z)m

has a pole of order 2m− 2 and we can reduce to the previous case.
Suppose now f(z) has no poles in Λ but has some zeros. If we take

f̃(z) = f(z)− c

where c is non-zero then f̃ no longer has a zero in Λ and we are done.

We now show how to reduce the number of zeros and poles we need to con-
sider for the interpolation prolem. Let Λ = Zω1 +Zω2 and let Ω0 a fundamental
parallelogram containing 0. we define ∗ : Ω0 → Ω0 by

a∗ =


ω1 + ω2 − a, a not on boundary

ω1 − a, a on ω1-line

ω2 − a, a on ω2-line

.

Identifying any other fundamental domain with Ω0 allows us to define a similar
operation on any fundamental domain (in fact, this operation is really defined
on C/Λ.)
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Exercise 5.4. The zeros of ℘(z) − c are simple with precisely double zeros at
the points congruent to ω1/2, (ω1 + ω2)/2, ω2/2. (Hint: one need to check the
zeros of ℘′(z).)

Remark 5.5. THe double zeros are precisely the points fixed under a 7→ a∗.

Lemma 5.6. Let f ∈ MerΛ(C). If f(a) = 0 then f(a∗) = 0.

Proof. If f(a) = f(−a) = f(ω1 + ω2 − a) = 0. The proof is similar for the
boundary cases.

The above lemma and exercise imply that ℘(z)−℘(a) has roots at a and a∗

with multiplicity one except in the special cases.
We can now prove Lemma 5.2

Proof of Lemma 5.2. The Zeros(f) ∩ Ω consists of points a1, . . . , an and points
congruent to −a1, . . . ,−an. The set Poles(f)∩Ω consist of points b1, . . . , bn and
points congruent to −b1, . . . ,−bn.

Forming the product with the appropriate multiplicities we have

1

f(z)

n∏
j=1

(℘(z)− ℘(aj))
mj∏l

j=1(℘(z)− ℘(bj))nj
∈ MerΛ(C).

Since this function has no poles it must be constant which proves our result.

Theorem 5.7. Let Λ ⊂ C be a lattice. We have

MerΛ(C) = C(℘Λ(z), ℘′Λ(z)).

Proof. Suppose f(z) ∈ MerΛ(C). In this proof we will use the shorthand
℘Λ(z) = ℘(z) and ℘′Λ(z) = ℘′(z). The functions

f(z) + f(−z), f(z)− f(−z)
℘′(z)

are even functions in MerΛ(C). Hence, by Lemma 5.2, there exists rational
functions A(z), B(z) ∈ C(z) such that

A(℘(z)) = f(z) + f(−z)

B(℘(z)) =
f(z)− f(−z)

℘′(z)

This implies that
f(z) = A(℘(z)) +B(℘(z))℘′(z).
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