Dupuy - Complex Analysis - Spring 2017 - Homework 01

1. Let ζ_{n} be a primative nth root of unity. Show that $\sum_{j=0}^{n-1} \zeta_{n}^{j}=0$.
2. (New Mexico, Summer 1999) Let \mathcal{H} be the upper half complex plane $\mathcal{H}=\{z \in \mathbf{C}: \operatorname{Im} z>0\}$. Let D be the unit disc $D=\{w:|w|<1\}$. Show that the map $f(z)=w=(z-i) /(z+i)$ defines a bijection $\mathcal{H} \rightarrow D$.
3. (Wallis' Formula) Using the complex representation of cosine, find a formula for

$$
\int_{0}^{2 \pi} \cos (\theta)^{2 n} d \theta
$$

4. Prove Hadamard's formula for the radius of convergence of a series $\sum_{n=0}^{\infty} a_{n} z^{n}$.

$$
R=\lim _{n \rightarrow \infty} \inf _{m \geq n}\left|a_{m}\right|^{-1 / m}
$$

Also show that the series converges absolutely and uniformly, (the differentiability thing is the next problem).
5. Suppose that $f(z)=\sum_{n \geq 0} a_{n} z^{n}$ has a radius of convergence R.
(a) Show $\sum_{n \geq 0} n a_{n} z^{n-1}$ converges with the same radius of convergence R.
(b) Show $\frac{d}{d z}\left[\sum_{n=0}^{\infty} a_{n} z^{n}\right]=\sum_{n \geq 0} \frac{d}{d z}\left[a_{n} z^{n}\right]$ on the disc of convergence.
(Warning: it is not true that for general $u_{n}(z) \rightarrow u(z)$ uniformly that $u_{n}^{\prime}(z) \rightarrow u_{n}(z)$ uniformly! This is a special fact about power series.)
6. (Extra Credit, see WW page 59) Show that the series

$$
\sum_{n=1}^{\infty} \frac{z^{n-1}}{\left(1-z^{n}\right)\left(1-z^{n+1}\right)}
$$

converges to $\frac{1}{(z-1)^{2}}$ when $|z|<1$ and $\frac{1}{z(z-1)^{2}}$ when $|z|>1$
7. If the series converges do some analysis to determine the radius of convergence at the boundary.
(a) Expand $\frac{1}{1+z^{2}}$ in a power series around $z=0$, find the radius of convergence.
(b) Find the radius of convergence of $\sum_{n \geq 0} n!z^{n}$.
(c) (New Mexico, Jan 1998) Expand $\frac{z^{2}+2 z-4}{z}$ in a power series around $z=1$ and find its radius of convergence.
8. (a) Let $B \times A \subset \mathbf{C} \times \mathbf{C}$ be an open region with compact closure. Let $f: B \times A \rightarrow \mathbf{C}$ be a function. Let $\gamma \subset A$ be a C^{1}-curve (so it has finite length). Define $F: B \rightarrow \mathbf{C}$ by

$$
F(z)=\int_{\gamma} f(z, s) d s
$$

Assuming $\frac{\partial f}{\partial z}(z, s)$ exists and is continuous for all $s \in \gamma$ and all $z \in B$ show that

$$
\frac{d}{d z}[F(z)]=\int_{\gamma} \frac{\partial f}{\partial z}(z, s) d s
$$

(b) Let $\Omega \subset \mathbf{C}$ be an open set. Let $\gamma:[0,1] \rightarrow \Omega$ be an C^{1} curve. Let $f \in \operatorname{hol}(\Omega)$ and $g \in L^{2}(\Omega)$. Show that

$$
F(z):=\int_{\gamma} f(\zeta-z) g(\zeta) d \zeta
$$

is holomorphic on Ω.
9. (Extra Credit, This exercise show how nice the complex numbers are and how if one tries to develop a notion of holomorphic function in higher dimensions it doesn't work.)
The quaternions are the Division algebra (non commutative field) over the reals defined by

$$
\mathbf{H}=\mathbf{R} \oplus \mathbf{R} i \oplus \mathbf{R} j \oplus \mathbf{R} k,\left(\cong \mathbf{R}^{4} \text { as a vector space }\right)
$$

where i, j and k satisfy

$$
i j k=-1 \text { and } i^{2}=j^{2}=k^{2}=-1
$$

The norm on the quaternions is defined as

$$
|a+b i+c j+d k|^{2}=a^{2}+b^{2}+c^{3}+d^{2}
$$

here $a, b, c, d \in \mathbf{R}$.
For $U \subset \mathbf{H}$ open, we say a function $f: U \rightarrow \mathbf{H}$ is holomorphic if

$$
f(q)=\lim _{h \rightarrow 0}\left((f(q+h)-f(q)) h^{-1}\right) .
$$

Show that the only quaternionic holomorphic functions are of the form

$$
f(q)=\alpha q+\beta
$$

where $\alpha, \beta \in \mathbf{H}$.
10. (New Mexico, Summer 2000) Show that the pullback of a harmonic function by an holomorphic map is harmonic (what these words means is explained below). Assume that $w=f(z)=u(z)+i v(z)$ is holomorphic map $f: D \rightarrow D^{\prime} \subset \mathbf{C}$. We consider D in the z-plane to a domain D^{\prime} in the w-plane. If ϕ is harmonic on D^{\prime}, show that

$$
\Phi(x, y):=\phi(u(x, y), v(x, y))
$$

is harmonic in D.
(The function Φ is called the pullback of ϕ by f. Sometimes in the literature these you will see the notation $f^{*} \phi$ for Φ.)

