Dupuy - Complex Analysis - Spring 2016 - Homework 02

1. (CUNY, Fall 2005) Let D be the closed unit disc. Let g_{n} be a sequence of analytic functions converging uniformly to f on D.
(a) Show that g_{n}^{\prime} converges.

Solution We have

$$
g_{n}^{\prime}(z)=\frac{1}{2 \pi i} \oint \frac{g_{n}(\zeta)}{(\zeta-z)^{2}} d \zeta \rightarrow \frac{1}{2 \pi i} \oint \frac{f(\zeta)}{(\zeta-z)^{2}}
$$

since limit of the integral is the integral of the limit for uniformly convergent functions.
(b) Conclude that f is analytic.

Solution If $g_{n} \rightarrow f$ and $g_{n}^{\prime} \rightarrow g$ with f continuous, then $\lim _{n \rightarrow \infty} g_{n}^{\prime}=f^{\prime}$.
2nd Solution By Morera's theorem, it is enough to show that $\oint_{\gamma} f(z) d z=0$ for all closed circles in the domain. But $\oint_{\gamma} f(z) d z=\lim _{n \rightarrow \infty} \oint_{\gamma} g_{n}(z) d z=0$.
2. Here is a first example of an analytic continuation "from the wild".
(a) Show that the Riemann Zeta function

$$
\zeta(z):=\sum_{n \geq 1} \frac{1}{n^{z}}
$$

converges for $\operatorname{Re} z>1$ and is analytic on this domain. (You need to use the "analytic convergence theorem", which states that a uniform limit of analytic functions is analytic. This is just a slight generalization of the previous problem.)
Solution Let $D \subset H=\{z \in \mathbf{C}: \operatorname{Re} z>1\}$ be compact. Since this is bounded away from the line $\operatorname{Re} z=1$, all $z \in D$ have $\operatorname{Re} z>\sigma>1$. This means $\left|n^{-z}\right|=n^{-x}<n^{-\sigma}$. The series $\sum_{n=1}^{\infty} n^{-\sigma}$ converges by the p-test, hence by the M-test $\sum_{n=1}^{\infty} n^{-s}$ converges absolutely and uniformly on all such regions D. Since the uniform limit of analytic functions is analytic we know that $\zeta(s)$ is analytic.
(b) (Whittaker and Watson, 2.8, problem 10)
i. Show that when $\operatorname{Re} s>1$,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{s-1}+\sum_{n=1}^{\infty}\left[\frac{1}{n^{s}}+\frac{1}{s-1}\left(\frac{1}{(n+1)^{s-1}}-\frac{1}{n^{s-1}}\right)\right]
$$

Solution It is enough to show that

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{s-1}\left(\frac{1}{(n+1)^{s-1}}-\frac{1}{n^{s-1}}\right)=\frac{-1}{(s-1)}
$$

when $\operatorname{Re} s>1$.
We observe that

$$
\sum_{n=1}^{N}\left(\frac{1}{(n+1)^{s-1}}-\frac{1}{n^{s-1}}\right)=\frac{1}{(N+1)^{s}}-1 \rightarrow-1 \text { as } N \rightarrow \infty
$$

since $\operatorname{Re} s>1$.
ii. Show that the series on the right converges when $0<\operatorname{Re} s<1$. (This means the series above gives us access to the interesting part of the Riemann-Zeta function. Hint: $\left.\int_{n}^{n+1} x^{-s} d x=\frac{(n+1)^{-s+1}}{1-s}-\frac{n^{-s+1}}{1-s}\right)$
Solution By the hint

$$
\sum_{n=1}^{N}\left[\frac{1}{n^{s}}+\frac{1}{s-1}\left(\frac{1}{(n+1)^{s-1}}-\frac{1}{n^{s-1}}\right)\right] \sum_{n=1}^{N} \int_{n}^{n+1}\left(n^{-s}-x^{-s}\right) d x
$$

so it is enought to show the series on the right converges as $N \rightarrow \infty$ when $0<\operatorname{Re} s<1$. For $x \in[n, n+1]$ we have

$$
\left|n^{-s}-x^{-s}\right|=\left|s \int_{n}^{x} y^{-1-s} d y\right| \leq|s| n^{-1-\operatorname{Re} s}
$$

so the series converges by the p-test. It, of course, converges absolutes and uniformly on compact subsets and hence is analytic on this region.
3. (New Mexico, not sure which year) Let f be analytic on C. Assume that $\max \{|f(z)|:|z|=r\} \leq$ $M r^{n}$ for a fixed constant $M>0$, and a sequence of valued r going to infinity. Show that f is a polynomial of degree less than or equal to n.

Solution By Cauchy's integral formula for derivatives we have

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{\gamma_{R}} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta
$$

Let $R>2|z|$ so that

$$
\begin{aligned}
\left|f^{(n)}(z)\right| & \leq \frac{n!}{2 \pi} \frac{M(f, R)}{(R-|z|)^{n+1}} 2 \pi R \\
& \leq n!\frac{M(f, R)}{(R / 2)^{n+1}} R \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

where the vanishing follows from the hypotheses on $M(f, R)$. Since $f^{(n)}(z)=0$ for all $z, f(z)$ must be a polynomial of degree n.
4. (a) Prove the Riemann Extension Theorem: Let $U \subset \mathbf{C}$ be a region containing a point z_{0}. Let $f \in \operatorname{hol}\left(U \backslash\left\{z_{0}\right\}\right)$. If f is bounded on U show that there exists a unique $\tilde{f} \in \operatorname{hol}(U)$ such that $\left.\widetilde{f}\right|_{U \backslash\left\{z_{0}\right\}}=f \in \operatorname{hol}\left(U \backslash\left\{z_{0}\right\}\right)$.
Solution By analytic continuation, it is enough to extend the function in a small neighborhood around z_{0}. Let $r>0$ be such that the closure of $D:=D_{r}\left(z_{0}\right)$ is contained in U. Consider

$$
\widetilde{f}(z):=\frac{1}{2 \pi i} \oint_{\partial D} f(\zeta) /(\zeta-z) d \zeta
$$

The integral is defined by boundedness of f, is holomorphic in all D since we can switch integration and summation. For $z \neq z_{0}$ we have

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{\partial D} f(\zeta) /(\zeta-z) d \zeta & =\operatorname{Res}\left(\frac{f(\zeta)}{\zeta-z} ; \zeta=z\right)+\operatorname{Res}\left(\frac{f(\zeta)}{\zeta-z} ; \zeta=z_{0}\right) \\
& =f(z)+\frac{1}{z_{0}-z} \operatorname{Res}\left(f(\zeta) ; \zeta=z_{0}\right) \\
& =f(z)+\frac{a_{-1}\left(f ; z_{0}\right)}{z_{0}-z}
\end{aligned}
$$

We can show the residue vanishes: since f is bounded in a neighborhood of z_{0} we have

$$
\left|a_{-1}\left(f ; z_{0}\right)\right|=\left|\frac{1}{2 \pi i} \int_{\gamma_{r}} f(\zeta) d \zeta\right| \leq \sup _{\left|\zeta-z_{0}\right|=r} r \rightarrow 0 \text { as } r \rightarrow 0
$$

Hence,

$$
\tilde{f}(z)=\frac{1}{2 \pi i} \oint_{\partial D} f(\zeta) /(\zeta-z) d \zeta=f(z) \text { for } z \neq z_{0}
$$

and $\widetilde{f}(z)$ is defined and analytic at $z=z_{0}$, so we are done.
(b) Recall that a morphism of topological spaces $f: X \rightarrow Y$ is "proper" if and only if the inverse image of every compact set is compact. Show that an analytic map $f: \mathbf{C} \rightarrow \mathbf{C}$ is proper if and only if for all $z_{j} \rightarrow \infty$ we have $f\left(z_{j}\right) \rightarrow \infty$.

Solution We will show the contrapositive: There exists some sequence $z_{j} \rightarrow \infty$ with $f\left(z_{j}\right)$ not going to infinity, if and only if there exists a compact subset $K \subset \mathbf{C}$ such that $f^{-1}(K)$ is not compact.

- Suppose that we have a $z_{j} \rightarrow \infty$ with $f\left(z_{j}\right)$ bounded. There exists a convergent subsequence $f\left(z_{j_{k}}\right) \rightarrow w_{0}$. For K a compact subset around w_{0} we know that $f^{-1}(K)$ is not compact as $z_{j_{k}} \in f^{-1}(K)$ and $z_{j_{k}} \rightarrow \infty$.
- Conversely, suppose there exists some compact subset K such that $f^{-1}(K)$ is not compact. Since $f^{-1}(K)$ is not compact it is not bounded (the inverse image of a closed set is always closed). Let z_{j} be an unbounded sequence of points in $f^{-1}(K)$. We can arrange so that $z_{j} \rightarrow \infty$ by going to a subsequence if necessary. We know that $f\left(z_{j}\right)$ is bounded which provides the example we wanted.
(c) Show that the only proper maps $f: \mathbf{C} \rightarrow \mathbf{C}$ are polynomials. (see page 27 of McMullen, you need to consider the function $g(z)=1 / f(1 / z)$ and show that $g(z)=z^{n} g_{0}(z)$ where $g_{0}(z)$ is analytic and non-zero. This will allows you to conclude $|g(z)|>c|z|^{n}$ for some n which will allows you to conclude behavious about the growth of $f(z)$ as $z \rightarrow \infty$.)

Solution Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be propert. Consider the function $g(z)=1 / f(1 / z)$. Note that $g \in \operatorname{hol}(\mathbf{C} \backslash\{0\})$. By properness, if $z_{j} \rightarrow 0, g\left(z_{j}\right) \rightarrow 0$. This means $g(z)$ is bounded in a neighborhood of zero so by the Riemann extension theorem $g(z)$ is actually entire with a finite order zero at $z=0$. By the local structure of analytic functions we can write $g(z)=z^{n} g_{0}(z)$ where $g_{0}(0) \neq 0$. We conclude $|g(z)| \geq c|z|^{n}$ near $z=0$ where $c=c_{r}=\inf _{|z|<r}\left|g_{0}(z)\right|$ for some r sufficiently small. Now we have

$$
f(z)=1 / g(1 / z)
$$

So for $|z|>1 / r$ we have

$$
|f(z)|<1 /|g(1 / z)|<|z|^{n} / c
$$

hence, by the modified versions of Liouville's Theorem for polynomial growth (Problem 3), we are done.
5. (New Mexico, not sure which year) Let f and g be entire functions satisfying $|f(z)| \leq|g(z)|$ for $|z| \geq 100$. Assume that g is not identically zero. Show that f / g is rational.

Solution Since $g(z)$ is analytic, its zeros are isolated. Let $\left\{z_{1}, \ldots, z_{n}\right\}=\{z \in \mathbf{C}:|z|<$ 100 and $g(z)=0\}$. Let $m_{j}=\operatorname{ord}_{z_{j}}(g)$. Let

$$
p(z):=\prod_{j=1}^{n}\left(z-z_{j}\right)^{m}
$$

By construction $p(z) / g(z)$ has no poles when $|z|<100$. Similarly, since $f(z) / g(z)$ has not poles where $|z|>1$ since $|f(z)| \leq|g(z)|$. This means that $p(z) f(z) / g(z)$ is entire and $|p(z) f(z) / g(z)| \leq$ $|p(z)|$ for $|z|>100$. By the modified version of Liouville's theorem for polynomial growth (Problems 3) the function $p(z) f(z) / g(z)=q(z) \in \mathbf{C}[z]$. This implies $f(z) / g(z)=q(z) / p(z)$ and we are done.
6. Prove Goursat's theorem. Let γ be a simple contour. If $f: \overline{\gamma^{+}} \rightarrow \mathbf{C}$ is holomorphic (but whose derivative is not necessarily continuous) then

$$
\int_{\gamma} f(\zeta) d \zeta=0
$$

Solution See the appendix of Greene and Krantz.
7. Suppose that $f(z)=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots$ has a finite radius of convergence. Let $g(z)=a_{n}+a_{n+1}\left(z-z_{0}\right)+a_{n+2}\left(z-z_{0}\right)^{2}+\cdots$. Show that $g(z)$ has the same radius of convergence as $f(z)$ at z_{0}. (Hint: don't think about this too much)

Solution Note that
$a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots=\left(a_{0}+\cdots+a_{n-1}\left(z-z_{0}\right)^{n}\right)+\left(z-z_{0}\right)^{n}\left(a_{n}+a_{n+1}\left(z-z_{0}\right)+a_{n+2}\left(z-z_{0}\right)^{2}+\cdots\right)$.
This shows that

$$
a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots
$$

converges if and only if

$$
a_{n}+a_{n+1}\left(z-z_{0}\right)+a_{n+2}\left(z-z_{0}\right)^{2}+\cdots
$$

converges.
8. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and let R be the radius of convergence (which is possibly infinite). Let $S_{N}(f)(z)=\sum_{n=0}^{N} a_{n} z^{n}$. Show that for all $r<R$ and all $z \in \mathbf{C}$ with $|z|<r$ we have

$$
\left|f(z)-S_{N}(f)(z)\right| \leq \frac{M(f, r)}{r-|z|} \frac{|z|^{N+1}}{r^{N}}
$$

where $M(f, r)=\max _{|z|=r}|f(z)|$.
Solution By expanding Cauchy's formula in a geometric series and truncating we get

$$
\begin{aligned}
S_{N}(z) & =\frac{1}{2 \pi i} \oint \frac{f(\zeta)}{\zeta}\left(\sum_{n=0}^{N}\left(\frac{z}{\zeta}\right)^{n}\right) d \zeta \\
& =\frac{1}{2 \pi i} \oint \frac{f(\zeta)}{\zeta-z}\left(1-\left(\frac{z}{\zeta}\right)^{N+1}\right) d \zeta \\
& =\frac{1}{2 \pi i} \oint \frac{f(\zeta)}{\zeta-z} d \zeta+\frac{1}{2 \pi i} \oint \frac{f(\zeta)}{\zeta-z}\left(\frac{z}{\zeta}\right)^{N+1} d \zeta \\
& =f(z)+E_{N}(z)
\end{aligned}
$$

where

$$
E_{N}(z):=\frac{1}{2 \pi i} \oint \frac{f(\zeta)}{\zeta-z}\left(\frac{z}{\zeta}\right)^{N+1} d \zeta
$$

is the error term in the truncated power series approximation. Estimating $E_{N}(z)$ using a circle of radius r gives

$$
\left|E_{N}(z)\right| \leq \frac{1}{2 \pi} \frac{M(f, r)}{r-|z|}\left(\frac{|z|}{r}\right)^{N+1} \cdot 2 \pi r=\frac{M(f, r)}{r-|z|} \frac{|z|^{N+1}}{r^{N}}
$$

which proves the result.
9. (UIC, Spring 2016) Describe all entire functions such that $f(1 / n)=f(-1 / n)=1 / n^{2}$ for all $n \in \mathbf{Z}$.

Solution The function must be z^{2}. Note that $f(z)-z^{2}$ has an accumulation point of zeros hence must be identically zero.
10. Let $U \subset \mathbf{C}$ be a connected open set. Consider $U \subset \mathbf{C}$ with the subspace topology (open subset of U are the intersection of open subsets of \mathbf{C} with U and closed subset are closed subset of \mathbf{C} intersected with U). Show that the only subset of U which are open, closed and nonempty is U itself.

Solution Suppose that $A \subset U$ is open and closed. Then A^{c} is both open and closed and $A \cap A^{c}=\emptyset$. We also have $U=A \cup A^{c}$ which is the union of two proper open sets. By definition of connected, we have $U=A$.

