Dupuy — Complex Analysis — Spring 2016 — Homework 02

- 1. (CUNY, Fall 2005) Let D be the closed unit disc. Let g_n be a sequence of analytic functions converging uniformly to f on D.
 - (a) Show that g'_n converges.

Solution We have

$$g'_n(z) = \frac{1}{2\pi i} \oint \frac{g_n(\zeta)}{(\zeta - z)^2} d\zeta \to \frac{1}{2\pi i} \oint \frac{f(\zeta)}{(\zeta - z)^2}$$

since limit of the integral is the integral of the limit for uniformly convergent functions.

(b) Conclude that f is analytic.

Solution If $g_n \to f$ and $g'_n \to g$ with f continuous, then $\lim_{n\to\infty} g'_n = f'$.

2nd Solution By Morera's theorem, it is enough to show that $\oint_{\gamma} f(z)dz = 0$ for all closed circles in the domain. But $\oint_{\gamma} f(z)dz = \lim_{n \to \infty} \oint_{\gamma} g_n(z)dz = 0$.

- 2. Here is a first example of an analytic continuation "from the wild".
 - (a) Show that the Riemann Zeta function

$$\zeta(z):=\sum_{n\geq 1}\frac{1}{n^z}$$

converges for $\operatorname{Re} z > 1$ and is analytic on this domain. (You need to use the "analytic convergence theorem", which states that a uniform limit of analytic functions is analytic. This is just a slight generalization of the previous problem.)

Solution Let $D \subset H = \{z \in \mathbb{C} : \operatorname{Re} z > 1\}$ be compact. Since this is bounded away from the line $\operatorname{Re} z = 1$, all $z \in D$ have $\operatorname{Re} z > \sigma > 1$. This means $|n^{-z}| = n^{-x} < n^{-\sigma}$. The series $\sum_{n=1}^{\infty} n^{-\sigma}$ converges by the *p*-test, hence by the *M*-test $\sum_{n=1}^{\infty} n^{-s}$ converges absolutely and uniformly on all such regions *D*. Since the uniform limit of analytic functions is analytic we know that $\zeta(s)$ is analytic.

- (b) (Whittaker and Watson, 2.8, problem 10)
 - i. Show that when $\operatorname{Re} s > 1$,

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{s-1} + \sum_{n=1}^{\infty} \left[\frac{1}{n^s} + \frac{1}{s-1} \left(\frac{1}{(n+1)^{s-1}} - \frac{1}{n^{s-1}} \right) \right]$$

Solution It is enough to show that

$$\lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{s-1} \left(\frac{1}{(n+1)^{s-1}} - \frac{1}{n^{s-1}} \right) = \frac{-1}{(s-1)}$$

when $\operatorname{Re} s > 1$. We observe that

$$\sum_{n=1}^{N} \left(\frac{1}{(n+1)^{s-1}} - \frac{1}{n^{s-1}} \right) = \frac{1}{(N+1)^s} - 1 \to -1 \text{ as } N \to \infty,$$

since $\operatorname{Re} s > 1$.

ii. Show that the series on the right converges when 0 < Re s < 1. (This means the series above gives us access to the interesting part of the Riemann-Zeta function. Hint: $\int_{n}^{n+1} x^{-s} dx = \frac{(n+1)^{-s+1}}{1-s} - \frac{n^{-s+1}}{1-s})$

Solution By the hint

$$\sum_{n=1}^{N} \left[\frac{1}{n^s} + \frac{1}{s-1} \left(\frac{1}{(n+1)^{s-1}} - \frac{1}{n^{s-1}} \right) \right] \sum_{n=1}^{N} \int_{n}^{n+1} (n^{-s} - x^{-s}) dx$$

so it is enought to show the series on the right converges as $N \to \infty$ when 0 < Re s < 1. For $x \in [n, n + 1]$ we have

$$|n^{-s} - x^{-s}| = |s \int_{n}^{x} y^{-1-s} dy| \le |s| n^{-1-\operatorname{Re} s},$$

so the series converges by the p-test. It, of course, converges absolutes and uniformly on compact subsets and hence is analytic on this region.

3. (New Mexico, not sure which year) Let f be analytic on **C**. Assume that $\max\{|f(z)| : |z| = r\} \le Mr^n$ for a fixed constant M > 0, and a sequence of valued r going to infinity. Show that f is a polynomial of degree less than or equal to n.

Solution By Cauchy's integral formula for derivatives we have

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{\gamma_R} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta.$$

Let R > 2|z| so that

$$|f^{(n)}(z)| \leq \frac{n!}{2\pi} \frac{M(f,R)}{(R-|z|)^{n+1}} 2\pi R$$

$$\leq n! \frac{M(f,R)}{(R/2)^{n+1}} R \to 0 \text{ as } R \to \infty$$

where the vanishing follows from the hypotheses on M(f, R). Since $f^{(n)}(z) = 0$ for all z, f(z) must be a polynomial of degree n.

4. (a) Prove the Riemann Extension Theorem: Let $U \subset \mathbf{C}$ be a region containing a point z_0 . Let $f \in \operatorname{hol}(U \setminus \{z_0\})$. If f is bounded on U show that there exists a unique $\tilde{f} \in \operatorname{hol}(U)$ such that $\tilde{f}|_{U \setminus \{z_0\}} = f \in \operatorname{hol}(U \setminus \{z_0\})$.

Solution By analytic continuation, it is enough to extend the function in a small neighborhood around z_0 . Let r > 0 be such that the closure of $D := D_r(z_0)$ is contained in U. Consider

$$\widetilde{f}(z) := \frac{1}{2\pi i} \oint_{\partial D} f(\zeta) / (\zeta - z) d\zeta.$$

The integral is defined by boundedness of f, is holomorphic in all D since we can switch integration and summation. For $z \neq z_0$ we have

$$\frac{1}{2\pi i} \oint_{\partial D} f(\zeta)/(\zeta - z)d\zeta = \operatorname{Res}\left(\frac{f(\zeta)}{\zeta - z}; \zeta = z\right) + \operatorname{Res}\left(\frac{f(\zeta)}{\zeta - z}; \zeta = z_0\right)$$
$$= f(z) + \frac{1}{z_0 - z} \operatorname{Res}(f(\zeta); \zeta = z_0)$$
$$= f(z) + \frac{a_{-1}(f; z_0)}{z_0 - z}.$$

We can show the residue vanishes: since f is bounded in a neighborhood of z_0 we have

$$|a_{-1}(f;z_0)| = |\frac{1}{2\pi i} \int_{\gamma_r} f(\zeta) d\zeta| \le \sup_{|\zeta - z_0| = r} r \to 0 \text{ as } r \to 0.$$

Hence,

$$\widetilde{f}(z) = \frac{1}{2\pi i} \oint_{\partial D} f(\zeta) / (\zeta - z) d\zeta = f(z) \text{ for } z \neq z_0$$

and $\widetilde{f}(z)$ is defined and analytic at $z = z_0$, so we are done.

(b) Recall that a morphism of topological spaces $f: X \to Y$ is "proper" if and only if the inverse image of every compact set is compact. Show that an analytic map $f: \mathbf{C} \to \mathbf{C}$ is proper if and only if for all $z_j \to \infty$ we have $f(z_j) \to \infty$.

Solution We will show the contrapositive: There exists some sequence $z_j \to \infty$ with $f(z_j)$ not going to infinity, if and only if there exists a compact subset $K \subset \mathbf{C}$ such that $f^{-1}(K)$ is not compact.

- Suppose that we have a $z_j \to \infty$ with $f(z_j)$ bounded. There exists a convergent subsequence $f(z_{j_k}) \to w_0$. For K a compact subset around w_0 we know that $f^{-1}(K)$ is not compact as $z_{j_k} \in f^{-1}(K)$ and $z_{j_k} \to \infty$.
- Conversely, suppose there exists some compact subset K such that $f^{-1}(K)$ is not compact. Since $f^{-1}(K)$ is not compact it is not bounded (the inverse image of a closed set is always closed). Let z_j be an unbounded sequence of points in $f^{-1}(K)$. We can arrange so that $z_j \to \infty$ by going to a subsequence if necessary. We know that $f(z_j)$ is bounded which provides the example we wanted.
- (c) Show that the only proper maps $f: \mathbf{C} \to \mathbf{C}$ are polynomials. (see page 27 of McMullen, you need to consider the function g(z) = 1/f(1/z) and show that $g(z) = z^n g_0(z)$ where $g_0(z)$ is analytic and non-zero. This will allows you to conclude $|g(z)| > c|z|^n$ for some *n* which will allows you to conclude behavious about the growth of f(z) as $z \to \infty$.)

Solution Let $f : \mathbf{C} \to \mathbf{C}$ be propert. Consider the function g(z) = 1/f(1/z). Note that $g \in \text{hol}(\mathbf{C} \setminus \{0\})$. By properness, if $z_j \to 0$, $g(z_j) \to 0$. This means g(z) is bounded in a neighborhood of zero so by the Riemann extension theorem g(z) is actually entire with a finite order zero at z = 0. By the local structure of analytic functions we can write $g(z) = z^n g_0(z)$ where $g_0(0) \neq 0$. We conclude $|g(z)| \ge c|z|^n$ near z = 0 where $c = c_r = \inf_{|z| < r} |g_0(z)|$ for some r sufficiently small. Now we have

$$f(z) = 1/g(1/z)$$

So for |z| > 1/r we have

$$|f(z)| < 1/|g(1/z)| < |z|^n/c$$

hence, by the modified versions of Liouville's Theorem for polynomial growth (Problem 3), we are done.

5. (New Mexico, not sure which year) Let f and g be entire functions satisfying $|f(z)| \le |g(z)|$ for $|z| \ge 100$. Assume that g is not identically zero. Show that f/g is rational.

Solution Since g(z) is analytic, its zeros are isolated. Let $\{z_1, \ldots, z_n\} = \{z \in \mathbb{C} : |z| < 100 \text{ and } g(z) = 0\}$. Let $m_j = \operatorname{ord}_{z_j}(g)$. Let

$$p(z) := \prod_{j=1}^{n} (z - z_j)^m.$$

By construction p(z)/g(z) has no poles when |z| < 100. Similarly, since f(z)/g(z) has not poles where |z| > 1 since $|f(z)| \le |g(z)|$. This means that p(z)f(z)/g(z) is entire and $|p(z)f(z)/g(z)| \le |p(z)|$ for |z| > 100. By the modified version of Liouville's theorem for polynomial growth (Problems 3) the function $p(z)f(z)/g(z) = q(z) \in \mathbb{C}[z]$. This implies f(z)/g(z) = q(z)/p(z) and we are done.

6. Prove Goursat's theorem. Let γ be a simple contour. If $f : \overline{\gamma^+} \to \mathbf{C}$ is holomorphic (but whose derivative is not necessarily continuous) then

$$\int_{\gamma} f(\zeta) d\zeta = 0.$$

Solution See the appendix of Greene and Krantz.

7. Suppose that $f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$ has a finite radius of convergence. Let $g(z) = a_n + a_{n+1}(z - z_0) + a_{n+2}(z - z_0)^2 + \cdots$. Show that g(z) has the same radius of convergence as f(z) at z_0 . (Hint: don't think about this too much)

Solution Note that

$$a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots = (a_0 + \dots + a_{n-1}(z - z_0)^n) + (z - z_0)^n (a_n + a_{n+1}(z - z_0) + a_{n+2}(z - z_0)^2 + \dots)$$

This shows that

$$a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$$

converges if and only if

$$a_n + a_{n+1}(z - z_0) + a_{n+2}(z - z_0)^2 + \cdots$$

converges.

8. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and let R be the radius of convergence (which is possibly infinite). Let $S_N(f)(z) = \sum_{n=0}^{N} a_n z^n$. Show that for all r < R and all $z \in \mathbf{C}$ with |z| < r we have

$$|f(z) - S_N(f)(z)| \le \frac{M(f,r)}{r - |z|} \frac{|z|^{N+1}}{r^N}$$

where $M(f, r) = \max_{|z|=r} |f(z)|$.

Solution By expanding Cauchy's formula in a geometric series and truncating we get

$$S_N(z) = \frac{1}{2\pi i} \oint \frac{f(\zeta)}{\zeta} \left(\sum_{n=0}^N \left(\frac{z}{\zeta} \right)^n \right) d\zeta$$

$$= \frac{1}{2\pi i} \oint \frac{f(\zeta)}{\zeta - z} \left(1 - \left(\frac{z}{\zeta} \right)^{N+1} \right) d\zeta$$

$$= \frac{1}{2\pi i} \oint \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \oint \frac{f(\zeta)}{\zeta - z} \left(\frac{z}{\zeta} \right)^{N+1} d\zeta$$

$$= f(z) + E_N(z)$$

where

$$E_N(z) := \frac{1}{2\pi i} \oint \frac{f(\zeta)}{\zeta - z} \left(\frac{z}{\zeta}\right)^{N+1} d\zeta$$

is the error term in the truncated power series approximation. Estimating $E_N(z)$ using a circle of radius r gives

$$|E_N(z)| \le \frac{1}{2\pi} \frac{M(f,r)}{r-|z|} \left(\frac{|z|}{r}\right)^{N+1} \cdot 2\pi r = \frac{M(f,r)}{r-|z|} \frac{|z|^{N+1}}{r^N}$$

which proves the result.

9. (UIC, Spring 2016) Describe all entire functions such that $f(1/n) = f(-1/n) = 1/n^2$ for all $n \in \mathbb{Z}$.

Solution The function must be z^2 . Note that $f(z) - z^2$ has an accumulation point of zeros hence must be identically zero.

10. Let $U \subset \mathbf{C}$ be a connected open set. Consider $U \subset \mathbf{C}$ with the subspace topology (open subset of U are the intersection of open subsets of \mathbf{C} with U and closed subset are closed subset of \mathbf{C} intersected with U). Show that the only subset of U which are open, closed and nonempty is U itself.

Solution Suppose that $A \subset U$ is open and closed. Then A^c is both open and closed and $A \cap A^c = \emptyset$. We also have $U = A \cup A^c$ which is the union of two proper open sets. By definition of connected, we have U = A.