Dupuy - Complex Analysis - Spring 2016 - Homework 02

1. (CUNY, Fall 2005) Let D be the closed unit disc. Let g_{n} be a sequence of analytic functions converging uniformly to f on D.
(a) Show that g_{n}^{\prime} converges.
(b) Conclude that f is analytic.
2. Here is a first example of an analytic continuation "from the wild".
(a) Show that the Riemann Zeta function

$$
\zeta(z):=\sum_{n \geq 1} \frac{1}{n^{z}}
$$

converges for $\operatorname{Re} z>1$ and is analytic on this domain. (You need to use the "analytic convergence theorem, which states that a uniform limit of analytic functions is analytic. This is just the previous problem.)
(b) (Whittaker and Watson, 2.8, problem 10)
i. Show that when $\operatorname{Re} s>1$,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{s-1}+\sum_{n=1}^{\infty}\left[\frac{1}{n^{s}}+\frac{1}{s-1}\left(\frac{1}{(n+1)^{s-1}}-\frac{1}{n^{s-1}}\right)\right]
$$

ii. Show that the series on the right converges when $0<\operatorname{Re} s<1$. (This means the series above gives us access to the interesting part of the Riemann-Zeta function. Hint: $\left.\int_{n}^{n+1} x^{-s} d x=\frac{\left(n+1^{-s+1}\right.}{1-s}-\frac{n^{-s+1}}{1-s}\right)$
3. (New Mexico, not sure which year) Let f be analytic on C. Assume that $\max \{|f(z)|:|z|=r\} \leq$ $M r^{n}$ for a fixed constant $M>0$, and a sequence of valued r going to infinity. Show that f is a polynomial of degree less than or equal to n.
4. (a) Prove the Riemann Extension Theorem: Let $U \subset \mathbf{C}$ be a region containing a point z_{0}. Let $f \in \operatorname{hol}\left(U \backslash\left\{z_{0}\right\}\right)$. If f is bounded on U show that there exists a unique $\tilde{f} \in \operatorname{hol}(U)$ such that $\left.\widetilde{f}\right|_{U}=f \in \operatorname{hol}(U)$.
(b) Recall that a morphism of topological spaces $f: X \rightarrow Y$ is "proper" if and only if the inverse image of every compact set is compact. Show that an analytic map $f: \mathbf{C} \rightarrow \mathbf{C}$ is proper if and only if for all $z_{j} \rightarrow \infty$ we have $f\left(z_{j}\right) \rightarrow \infty$.
(c) Show that the only proper maps $f: \mathbf{C} \rightarrow \mathbf{C}$ are polynomials. (see page 27 of McMullen, you need to consider the function $g(z)=1 / f(1 / z)$ and show that $g(z)=z^{n} g_{0}(z)$ where $g_{0}(z)$ is analytic and non-zero. This will allows you to conclude $|g(z)|>c|z|^{n}$ for some n which will allows you to conclude behavious about the growth of $f(z)$ as $z \rightarrow \infty$.)
5. (New Mexico, not sure which year) Let f and g be entire functions satisfying $|f(z)| \leq|g(z)|$ for $|z| \geq 100$. Assume that g is not identically zero. Show that f / g is rational.
6. Prove Goursat's theorem. Let γ be a simple contour. If $f: \overline{\gamma^{+}} \rightarrow \mathbf{C}$ is holomorphic (but whose derivative is not necessarily continuous) then

$$
\int_{\gamma} f(\zeta) d \zeta=0
$$

7. Suppose that $f(z)=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots$ has a finite radius of convergence. Let $g(z)=a_{n}+a_{n+1}\left(z-z_{0}\right)+a_{n+2}\left(z-z_{0}\right)^{2}+\cdots$. Show that $g(z)$ has the same radius of convergence as $f(z)$ at z_{0}. (Hint: don't think about this too much)
8. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and let R be the radius of convergence (which is possibly infinite). Let $S_{N}(f)(z)=\sum_{n=0}^{N} a_{n} z^{n}$. Show that for all $r<R$ and all $z \in \mathbf{C}$ with $|z|<r$ we have

$$
\left|f(z)-S_{N}(f)(z)\right| \leq \frac{M(f, r)}{r-|z|} \frac{|z|^{N+1}}{r^{N}}
$$

where $M(f, r)=\max _{|z|=r}|f(z)|$.
9. (UIC, Spring 2016) Describe all entire functions such that $f(1 / n)=f(-1 / n)=1 / n^{2}$ for all $n \in \mathbf{Z}$.
10. Let $U \subset \mathbf{C}$ be a connected open set. Consider $U \subset \mathbf{C}$ with the subspace topology (open subset of U are the intersection of open subsets of \mathbf{C} with U and closed subset are closed subset of \mathbf{C} intersected with U). Show that the only subset of U which are open, closed and nonempty is U itself.

