Dupuy — Complex Analysis — Spring 2017 — Homework 03

Master's level

1. (Rice, May 2003) Find all entire functions f(z) which satisfy $\operatorname{Re} f(z) \leq 2/|z|$ when |z| > 1. (Hint: Consider $e^{-f(z)}$ or $e^{f(z)}$. You will need the maximum modulus principle and Liouville's theorem.)

Solution Consider the function $g(z) = e^{f(z)}$. We have $|g(z)| = e^{\operatorname{Re} f(z)} < e^{2/|z|} < e^2$ on all **C** by the given bound and the Maximum-Modulus principle. Every bounded entire function is constant so g(z) is constant and hence f(z) is constant.

- 2. Let u(z) be a real valued harmonic function on a domain $D \subset \mathbf{C}$
 - (a) A harmonic conjugate is a function v(x,y) such that f(x+iy) := u(x,y) + iv(x,y) is holomorphic. Show that u(x,y) = u(z) has a harmonic conjugate locally. (Hint: Use the fundamental theorem of line integrals $v(\vec{P}) - v(\vec{Q}) = \int_C \nabla v \cdot d\vec{r}$ if C is a path starting a \vec{Q} and ending at \vec{P})

Solution We claim that

$$v(x,y) := \int_C -u_y dx + u_x dy$$

where C is a path from a fixed point (x_0, y_0) to a variable point (x, y) does the trick. More precisely, let R_0 be an open retangle in D. Fix (x_0, y_0) in R_0 . For each $(x, y) \in R_0$ we can form a rectangle R with diagonal vertices (x_0, y_0) and (x, y). Note that

$$\oint_{\partial R} -u_y dx + u_x dy = \iint_R (u_{xx} + u_{yy}) dx dy = 0$$

by Green's Theorem. This implies that

$$\int_{C_1} -u_y dx + u_x dy = \int_{C_2} -u_y dx + u_x dy$$

where C_1 is the path around the boundary of R given by $(x_0, y_0) \to (x_0, y) \to (x, y)$ and C_2 is the path around the boundary of R given by $(x_0, y_0) \to (x, y_0) \to (x, y)$. In coordinates we have

$$v(x,y) = \int_{C_1} -u_y dx + u_x dy = \int_{y_0}^y u_x(x_0,\eta) d\eta + \int_{x_0}^x -u_y(\xi,y) d\xi.$$
$$v(x,y) = \int_{C_2} -u_y dx + u_x dy = \int_{x_0}^x -u_y(\xi,y_0) d\xi + \int_{y_0}^y u_x(x,\eta) d\eta.$$

The formula using C_1 implies $v_x(x, y) = -u_y(x, y)$. The formula using C_2 implies $v_y(x, y) = u_x(x, y)$. This shows that the pair of functions (u, v) satisfy the Cauchy-Riemann equations and hence that f(z) = u(z) + iv(z) is locally an analytic function.

(b) Show that for all $D_r(z_0) \subset D$ we have

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta.$$

(Hint: use a harmonic conjugate)

Solution By the existence of a harmonic conjugate we may write f(z) = u(z) + iv(z) for some analytic function f(z). By the mean value theorem for analytic functions we have

$$u(z_0) + iv(z_0) = f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta + \frac{i}{2\pi} \int_0^{2\pi} v(z_0 + re^{i\theta}) d\theta$$

Breaking into real an imaginary parts gives the result.

(c) If $z_0 \in D$ has the property that there exists some r > 0 with $D_r(z_0) \subset D$ and

 $u(z_0) \ge u(z)$

for all $z \in D_r(z_0)$ then u(z) is constant. (Hint: Consider a function such that f(z) = u(z) + iv(z) then consider the maximum of $e^{f(z)}$.)

Solution Consider f(z) = u(z) + iv(z) analytic and let $g(z) = e^{f(z)}$. Since $|g(z)| = e^{u(z)}$ if $u(z_0)$ is a maximum then $e^{f(z)}$ is a constant function by the maximum modulus principal for analytic function. This shows that u(z) is constant as |g(z)| would be.

Remark By the maximum modulus principle for analytic functions we have

$$\max_{|z-z_0| \le r} |g(z)| \le \max_{|z-z_0|=r} |g(z)|.$$

Since $|g(z)| = e^{u(z)}$ this implies

$$\max_{z-z_0|\le r} u(z) = \max_{|z-z_0|=r} u(z).$$

3. Let u(x + iy) = u(x, y) be a real valued harmonic function. A harmonic conjugate is a function v(x, y) such that f(x + iy) := u(x, y) + iv(x, y) is holomorphic.

Find all of the harmonic conjugates of $u(x, y) = x^3 - 3xy^2 + 2x$.

Solution We can see that $u = \operatorname{Re}(z^3 + 2z + ic)$ where c is a real number. This implies all harmonic conjugates have the form

$$v = -y^3 + 3x^2y + c.$$

4. (Green and Krantz, Ch 11) A subset $S \subset \mathbb{R}^n$ is **path connected** if for all $a, b \in S$ there exists a continuous $\gamma : [0,1] \to S$ such that $\gamma(0) = a$ and $\gamma(1) = b$.

Let U be an open subset of \mathbb{R}^n . Show that U is path connected if and only if U is connected. (Hint: show that the collection of path connected elements is open and closed. Also, you can use that the only nonempty open and closed subset of a connected open set is the entire set itself.)

Solution Clearly if U is path connected it is connected.

Conversely, suppose that U is connected. Let $S_a \subset U$ be the set of points that is path connected to some point $a \in U$.

- This set S_a is nonempty as it contains the neighborhood of a.
- The set S_a is open because every open ball is path connected.
- The set S_a^c is also open. Suppose not. Suppose that there existed some $b \in S_a^c$, some disc $D \ni b$ and some point $c \in D$ such that c was path connected to a. Well, b is path connected to c and c is path connected to a which implies b is path connected to a which is a contradiction.

The set S_a is open, closed and non-empty in a connected open set and hence must be all of U (see Homework 02)

Ph.D. level

5. (New Mexico, not sure which year) Let f(z) and g(z) be entire functions. Show that if f(g(z)) is a polynomial then both f(z) and g(z) are polynomials. (Hint: this relates to the problem on properness from the previous homework).

Solution We will use the fact that polynomials are the only proper entire functions (Homework 02, Problem 4c). Suppose g(z) is proper. There exists some $z_j \to \infty$ such that $g(z_j)$ is bounded. By passing to a subsequence, we can assume $g(z_j) \to w_0$ as $j \to \infty$. This means

$$f(w_0) = f(\lim_{j \to \infty} g(z_j)) = \lim_{j \to \infty} f(g(z_j)) = \infty,$$

which is a contradiction. The first equality follows from the definition of w_0 , the second equality follows from continuity and the last equality follows from the assumption that $f \circ g$ is proper. Hence we have the g(z) is a polynomial.

Suppose now that f(z) is not a polynomial. Then there exist some sequence $w_j \to \infty$ such that $f(w_j)$ is bounded. By passing to a subsequence we can assume that $f(w_j)$ converges to ζ_0 . Since g(z) is a polynomial and **C** is algebraically closed, g(z) = w has a solution in z for all w, hence g is surjective. Let z_j be such that $g(z_j) = w_j$. By shifting if necessary, we can assume, without loss of generality, that $|z_j| > 1$.

We claim that $z_j \to \infty$ as $j \to \infty$. To see this, write $g(z) = a_0 + a_1 z + \cdots + a_d z^d$. If g(z) = w with |z| > 1 then

$$|w| \le |g(z)| \le |a_0| + |a_1||z| + \dots + |a_d||z|^d \le A|z|^d$$

where $A = \max |a_j|$. Then

$$(|w|/A)^{1/d} \le |z|.$$

Hence if $w_j \to \infty$ then $z_j \to \infty$.

We now have a sequence $z_j \to \infty$ such that $f(g(z_j)) = f(w_j) \to \zeta_0$ which contradicts the fact that $f \circ g$ is proper. This implies that f must also be a polynomial.

Remark There is another way of doing this using the Castorati-Weierstrass Theorem which we haven't talked about yet. It states that if f(z) has an essential singularity at z_0 then for all $c \in \mathbf{C}$ there exists some $z_j \to z_0$ such that $f(z_j) \to c$.

6. Show that the following conditions are equivalent for a topological space X:

- (a) For all $a, b \in X$ there exists open sets $U \ni a$ and $V \ni b$ with $U \cap V = \emptyset$.
- (b) For all $a, b \in X$, if every neighborhood of a intersects every neighborhood of b then a = b.
- (c) The diagonal map $X \to X \times X$ given by $x \mapsto (x, x)$ is proper.
- (d) The diagonal subset is closed.

If any of these conditions hold we call the topological space **separated** or **hausdorff**. (Hint: You should use the fact that a morphism f is proper if and only if f is closed and the inverse image of every point is compact.)

Solution 6a \iff 6b Taking the contrapositive of 6b we get

 $a \neq b \iff \exists$ neighborhoods of a and b which don't intersect.

This is exactly condition 6b.

6a \implies **6d** Let $\Delta \subset X \times X$ be the diagonal:

$$X \times X \setminus \Delta = \{(a, b) : a \neq b\}.$$

We will show $X \times X \setminus \Delta$ is open. Suppose $a \neq b$. Then there exists U and V open such that

 $U \ni a \text{ and } V \ni b \text{ and } U \cap V = \emptyset.$

This means

$$(U \times X) \cap (X \times V) = U \times V$$

is an open set containing (a, b) not contained in the diagonal.

 $6a \implies 6d$ Using the hint, if the diagonal map

diag :
$$X \to X \times X$$

$$\operatorname{diag}(x) = (x, x)$$

is proper, then the image of a closed set is closed. Hence, the diagonal is closed.

- **6d** \implies **6c** Suppose Δ is closed. To show diag is proper, is it enough to show that the it is closed and the preimage of every point is compact.¹
 - The preimage of every point under diag is compact as it is either a point or the empty set.
 - Let $A \subset X$ be closed. Then diag $(A) = (A \times X) \cap \Delta$ which is the intersection of two closed sets and hence closed. This shows diag : $X \to X \times X$ is a closed map.

Background:

- Let X and Y be topological spaces. We define the topology on $X \times Y$ to be the smallest topology such that the projection maps $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ are continuous (this means the open sets are generated by sets of the form $U \times Y$ or $X \times V$ for $U \subset X$ open or $X \times V$ for $V \subset Y$ open.
- A topological space X is **compact** if every open cover has a finite subcover. An open cover is just a union of open sets that equal X.
- A **proper map** is a morphism of topological spaces such that the inverse image of compact sets is compact.

Side Remark: The third condition is interesting because Grothendieck realized we can use it to extend this definition to categories other than topological spaces. In particular to the category of "schemes".

 $^{^1\}mathrm{A}$ proof of this can be found on Wikipedia