
Dupuy — Complex Analysis — Spring 2017 — Homework 03

Master’s level

1. (Rice, May 2003) Find all entire functions f(z) which satisfy Re f(z) ≤ 2/|z| when |z| > 1. (Hint:
Consider e−f(z) or ef(z). You will need the maximum modulus principle and Liouville’s theorem.)

Solution Consider the function g(z) = ef(z). We have |g(z)| = eRe f(z) < e2/|z| < e2 on all C by
the given bound and the Maximum-Modulus principle. Every bounded entire function is constant
so g(z) is constant and hence f(z) is constant.

2. Let u(z) be a real valued harmonic function on a domain D ⊂ C

(a) A harmonic conjugate is a function v(x, y) such that f(x + iy) := u(x, y) + iv(x, y) is
holomorphic. Show that u(x, y) = u(z) has a harmonic conjugate locally. (Hint: Use the

fundamental theorem of line integrals v(P⃗ ) − v(Q⃗) =
∫
C
∇v · dr⃗ if C is a path starting a Q⃗

and ending at P⃗ )

Solution We claim that

v(x, y) :=

∫
C

−uydx+ uxdy

where C is a path from a fixed point (x0, y0) to a variable point (x, y) does the trick.

More precisely, let R0 be an open retangle in D. Fix (x0, y0) in R0. For each (x, y) ∈ R0 we
can form a rectangle R with diagonal vertices (x0, y0) and (x, y). Note that∮

∂R

−uydx+ uxdy =

∫∫
R

(uxx + uyy)dxdy = 0

by Green’s Theorem. This implies that∫
C1

−uydx+ uxdy =

∫
C2

−uydx+ uxdy

where C1 is the path around the boundary of R given by (x0, y0) → (x0, y) → (x, y) and C2

is the path around the boundary of R given by (x0, y0) → (x, y0) → (x, y).

In coordinates we have

v(x, y) =

∫
C1

−uydx+ uxdy =

∫ y

y0

ux(x0, η)dη +

∫ x

x0

−uy(ξ, y)dξ.

v(x, y) =

∫
C2

−uydx+ uxdy =

∫ x

x0

−uy(ξ, y0)dξ +

∫ y

y0

ux(x, η)dη.

The formula using C1 implies vx(x, y) = −uy(x, y). The formula using C2 implies vy(x, y) =
ux(x, y). This shows that the pair of functions (u, v) satisfy the Cauchy-Riemann equations
and hence that f(z) = u(z) + iv(z) is locally an analytic function.

(b) Show that for all Dr(z0) ⊂ D we have

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ)dθ.

(Hint: use a harmonic conjugate)
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Solution By the existence of a harmonic conjugate we may write f(z) = u(z) + iv(z) for
some analytic function f(z). By the mean value theorem for analytic functions we have

u(z0)+iv(z0) = f(z0) =
1

2π

∫ 2π

0

f(z0+reiθ)dθ =
1

2π

∫ 2π

0

u(z0+reiθ)dθ+
i

2π

∫ 2π

0

v(z0+reiθ)dθ

Breaking into real an imaginary parts gives the result.

(c) If z0 ∈ D has the property that there exists some r > 0 with Dr(z0) ⊂ D and

u(z0) ≥ u(z)

for all z ∈ Dr(z0) then u(z) is constant. (Hint: Consider a function such that f(z) =
u(z) + iv(z) then consider the maximum of ef(z).)

Solution Consider f(z) = u(z) + iv(z) analytic and let g(z) = ef(z). Since |g(z)| = eu(z) if
u(z0) is a maximum then ef(z) is a constant function by the maximum modulus principal for
analytic function. This shows that u(z) is constant as |g(z)| would be.

Remark By the maximum modulus principle for analytic functions we have

max
|z−z0|≤r

|g(z)| ≤ max
|z−z0|=r

|g(z)|.

Since |g(z)| = eu(z) this implies

max
|z−z0|≤r

u(z) = max
|z−z0|=r

u(z).

3. Let u(x + iy) = u(x, y) be a real valued harmonic function. A harmonic conjugate is a function
v(x, y) such that f(x+ iy) := u(x, y) + iv(x, y) is holomorphic.

Find all of the harmonic conjugates of u(x, y) = x3 − 3xy2 + 2x.

Solution We can see that u = Re(z3+2z+ ic) where c is a real number. This implies all harmonic
conjugates have the form

v = −y3 + 3x2y + c.

4. (Green and Krantz, Ch 11) A subset S ⊂ Rn is path connected if for all a, b ∈ S there exists a
continuous γ : [0, 1] → S such that γ(0) = a and γ(1) = b.

Let U be an open subset of Rn. Show that U is path connected if and only if U is connected.
(Hint: show that the collection of path connected elements is open and closed. Also, you can use
that the only nonempty open and closed subset of a connected open set is the entire set itself. )

Solution Clearly if U is path connected it is connected.

Conversely, suppose that U is connected. Let Sa ⊂ U be the set of points that is path connected
to some point a ∈ U .

• This set Sa is nonempty as it contains the neighborhood of a.

• The set Sa is open because every open ball is path connected.

• The set Sc
a is also open. Suppose not. Suppose that there existed some b ∈ Sc

a, some disc
D ∋ b and some point c ∈ D such that c was path connected to a. Well, b is path connected to
c and c is path connected to a which implies b is path connected to a which is a contradiction.

The set Sa is open, closed and non-empty in a connected open set and hence must be all of U (see
Homework 02)
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Ph.D. level

5. (New Mexico, not sure which year) Let f(z) and g(z) be entire functions. Show that if f(g(z))
is a polynomial then both f(z) and g(z) are polynomials. (Hint: this relates to the problem on
properness from the previous homework).

Solution We will use the fact that polynomials are the only proper entire functions (Homework
02, Problem 4c). Suppose g(z) is proper. There exists some zj → ∞ such that g(zj) is bounded.
By passing to a subsequence, we can assume g(zj) → w0 as j → ∞. This means

f(w0) = f( lim
j→∞

g(zj)) = lim
j→∞

f(g(zj)) = ∞,

which is a contradiction. The first equality follows from the definition of w0, the second equality
follows from continuity and the last equality follows from the assumption that f ◦ g is proper.
Hence we have the g(z) is a polynomial.

Suppose now that f(z) is not a polynomial. Then there exist some sequence wj → ∞ such that
f(wj) is bounded. By passing to a subsequence we can assume that f(wj) converges to ζ0. Since
g(z) is a polynomial and C is algebraically closed, g(z) = w has a solution in z for all w, hence g
is surjective. Let zj be such that g(zj) = wj . By shifting if necessary, we can assume, without loss
of generality, that |zj | > 1.

We claim that zj → ∞ as j → ∞. To see this, write g(z) = a0 + a1z + · · · adzd. If g(z) = w with
|z| > 1 then

|w| ≤ |g(z)| ≤ |a0|+ |a1||z|+ ·+ |ad||z|d ≤ A|z|d

where A = max |aj |. Then
(|w|/A)1/d ≤ |z|.

Hence if wj → ∞ then zj → ∞.

We now have a sequence zj → ∞ such that f(g(zj)) = f(wj) → ζ0 which contradicts the fact that
f ◦ g is proper. This implies that f must also be a polynomial.

Remark There is another way of doing this using the Castorati-Weierstrass Theorem which we
haven’t talked about yet. It states that if f(z) has an essential singularity at z0 then for all c ∈ C
there exists some zj → z0 such that f(zj) → c.

6. Show that the following conditions are equivalent for a topological space X:

(a) For all a, b ∈ X there exists open sets U ∋ a and V ∋ b with U ∩ V = ∅.
(b) For all a, b ∈ X, if every neighborhood of a intersects every neighborhood of b then a = b.

(c) The diagonal map X → X ×X given by x 7→ (x, x) is proper.

(d) The diagonal subset is closed.

If any of these conditions hold we call the topological space separated or hausdorff. (Hint: You
should use the fact that a morphism f is proper if and only if f is closed and the inverse image of
every point is compact.)

Solution 6a ⇐⇒ 6b Taking the contrapositive of 6b we get

a ̸= b ⇐⇒ ∃ neighborhoods of a and b which don’t intersect .

This is exactly condition 6b.

6a =⇒ 6d Let ∆ ⊂ X ×X be the diagonal:

X ×X \∆ = {(a, b) : a ̸= b}.
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We will show X ×X \∆ is open. Suppose a ̸= b. Then there exists U and V open such that

U ∋ a and V ∋ b and U ∩ V = ∅.

This means
(U ×X) ∩ (X × V ) = U × V

is an open set containing (a, b) not contained in the diagonal.

6a =⇒ 6d Using the hint, if the diagonal map

diag : X → X ×X

diag(x) = (x, x)

is proper, then the image of a closed set is closed. Hence, the diagonal is closed.

6d =⇒ 6c Suppose ∆ is closed. To show diag is proper, is it enough to show that the it is closed
and the preimage of every point is compact.1

• The preimage of every point under diag is compact as it is either a point or the empty
set.

• Let A ⊂ X be closed. Then diag(A) = (A×X)∩∆ which is the intersection of two closed
sets and hence closed. This shows diag : X → X ×X is a closed map.

Background:

• Let X and Y be topological spaces. We define the topology on X × Y to be the smallest
topology such that the projection maps πX : X×Y → X and πY : X×Y → Y are continuous
(this means the open sets are generated by sets of the form U × Y or X × V for U ⊂ X open
or X × V for V ⊂ Y open.

• A topological space X is compact if every open cover has a finite subcover. An open cover
is just a union of open sets that equal X.

• A proper map is a morphism of topological spaces such that the inverse image of compact
sets is compact.

Side Remark: The third condition is interesting because Grothendieck realized we can use it to
extend this definition to categories other than topological spaces. In particular to the category of
“schemes”.

1A proof of this can be found on Wikipedia
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