
Dupuy — Complex Analysis — Spring 2017 — Homework 04

Master’s Level

1. (Whittaker and Watson, 6.24,3) If −1 < z < 3 then∫ ∞

0

xz

(1 + x2)2
dx =

π(1− z)

4 cos(πz/2)

I

II

III

IV

Figure 1: A bad drawing of the key-hole contour you need to use for the first problem.

Solution I am going to replace z with t to remind me that it is real. We will use z for the complex
variable. Let f(z) = zt

(1+z2)2 . We use the “keyhole” contour and the branch of the log where

Arg(z) ∈ [0, 2π). We have∫
IR,r+IIR+IIIR,r+IVr

f(z)dz = 2πi(Res(f ; z = i) + Res(f ; z = −i)).

We will use the notation
∑

Res for the right hand side of this equality.

• Estimate on outer circle:

|
∫
IIR

zt

(1 + z2)2
dz| ≤

∫
IIR

|zt|
|1 + z2|2

|dz|

≤ Rt

(R2 − 1)2
2πR → 0 as R → ∞.

The vanishing follows from the fact that the last term is O(Rt+1−4) as R → ∞ with t < 3.

• Estimate on the inner circle:

|
∫
IVr

zt

(1 + z2)2
dz| ≤ rt

(1− r2)2
2πr → 0 as r → 0
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• Computation of residues: Using f(z) = zt/(z − i)2(z + i)2 we get that

Res(f ; z = i) =
1

2πi

∮
∂Dr(i)

zt

(z − i)2(z + i)2
dz

=
d

dz

[
zt

(z + i)2

]
z=i

=
−1

4

(
it−1t+ it+1

)
Res(f ; z = −i) =

1

2πi

∮
∂Dr(−i)

zt

(z − i)2(z + i)2
dz

=
d

dz

[
zt

(z − i)2

]
z=−i

=
−1

4

(
(−i)t−1t+ (−i)t+1

)
The sum of the residues

∑
Res then satisfies

−4
∑

Res = 2eπit sin(πt/2))(1− t).

This computation took me 9 lines which I’m omitting. In these computations we are constantly
using things like 1 + e2ia = eia(e−ia + eia) = 2eia cos(a). Equivalently, one can just expan
everything out in terms of sine and cosine using Euler’s formula and watch things cancel.

Using the monodromy we see that

(1− e2πit)

∫ ∞

0

xt

(1 + x2)2
dx = 2πi

∑
Res

=⇒ −ieiπt(4 sin(πt/2) cos(πt/2))

∫ ∞

0

xt

(1 + x2)2
dx = 2πi · −1

4
· 2eπit sin(πt/2)(1− t)

=⇒
∫ ∞

0

xt

(1 + x2)2
dx =

π(1− t)

4 cos(πt/2)

The computation of the left hand side used that sin(θ) = 2 sin(θ/2) cos(θ/2).

2. (Whittaker and Watson, 6.21, Example 4) Let a > b > 0 be real numbers. Show that∫ 2π

0

dθ

(a+ b cos(θ))2
=

2πa

(a2 − b2)3/2

Solution We turn the computation into a residue integral. If z = eiθ then dθ = dz/iz:

∫ 2π

0

dθ

(a+ b cos(θ))2
=

∮
∂D1(0)

1

(a+ b
2 (z +

1
z ))

2

dz

iz

= 2π
∑

(residues of 1
(a+ b

2 (z+
1
z ))

2
1
z inside unit disc ).

It remains to compute the residues. We have

1

(a+ b
2 (z +

1
z ))

2

1

z
=

z

(az + b
2 (z

2 + 1))2
=

4

b2

[
z

(z2 + 2(a/b)z + 1)2

]
.

Note that since a > b > 0 we have a/b > 1. The roots of the denominator are (a/b)±
√

(a/b)2 − 1

which are both real. One finds that (a/b) +
√

(a/b)2 − 1 > 1 and (a/b) −
√
(a/b)2 − 1 < 1. To
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see this second inequality, write a/b = 1 + ε, then one can see that (1 + ε) −
√
(1 + ε)2 − 1 =

(1 + ε)−
√
ε(2 + ε) < 1 + ε−

√
ε2 = 1.

It remains to compute the residue at z = (a/b)−
√
(a/b)2 − 1.

Let c = a/b. Then

4

b2

[
z

(z2 + 2cz + 1)2

]
=

4

b2

[
z

(z − (c+
√
c2 − 1))2(z − (c−

√
c2 − 1))2

]
and the residue is

4

b2
d

dz

[
z

(z − (c+
√
c2 − 1))2

]
z=(c−

√
c2−1

.

Computing this out gives

2π · 4

b2
c

4(
√
c2 − 1)3

=
2πa

a2 − b2
.

(I wrote this last line out in four lines on my paper)

3. (Whittaker and Watson, 6.23, 2) If a > 0 and b > 0 show that∫ ∞

−∞

x4dx

(a+ bx2)4
=

π

16a3/2b5/2
.

I

II

Figure 2: The semi-circle contour you need to use for this problem.

Solution For this problem we use an upper semicircle to relate our improper integral to our

contour integral. Note that because z4

(a+bz2)4 ∼ 1/b4z4 as |z| → ∞ we have that

lim
R→∞

∫
IIR

z4

(a+ bz2)4
dz = 0.

This implies that ∫ ∞

−∞

x4dx

(a+ bx2)4
= lim

R→∞

∫
IR+IIR

z4dz

(a+ bz2)4
=

∑
Res .

Since a+ bx2 = b(x− i(a/b)1/2)(x+ i(a/b))1/2, we only have one residue and this gives∫ ∞

−∞

x4dx

(a+ bx2)4
= 2πiRes(

z4

b4(z2 + a
b )

4
; z = i

√
a

b
).

We just need to compute the series of z4/(z + c)4 for for c = i
√

a
b out to (z − c)3 in order to

compute the residue. The series of z4/(z + c)4 at z = c is

z4/(z+c)4 =
1

16
+(

1

8 c
)(−c+ z)+(

1

32 c2
)(−c+ z)

2
+(− 1

32 c3
)(−c+ z)

3
+(

3

256 c4
)(−c+ z)

4
+(− 1

256 c6
)(−c+ z)

6
+· · ·

(I used sage here because I’m lazy, the command latex will export output as latex. The command
show, shows the display as it would in latex.)
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Using c = i
√
a/b and the third coefficient gives our residue:

2πi · 1

b4
· −1

32c3
=

π

16

1

b4(a/b)3/2

4. (Whittaker and Watson, 6.22, 1) Show that if a > 0 then∫ ∞

0

cos(x)

x2 + a2
dx =

π

2a
e−a.

Solution We have ∫ ∞

0

cos(x)

x2 + a2
dx =

1

2

∫ ∞

−∞

cos(x)

x2 + a2
dx

since the function is even.

We then do the trick where we replace cos(x) by eix and then take the real part of the result. For
the integral

∫∞
−∞ eix/(x2 + a2)dx we use the usual semi-circle in the upper-half plane. This gives

1

2

∫ ∞

−∞
eix/(x2 + a2)dx =

1

2
· 2πiRes( eiz

(z − ia)(z + ia); z = ia
) = πi · eiz

z + ia
|z=ia =

πe−a

2a
.

Ph.D. Level

5. (Whittaker and Watson, 6.22) If the Re z > 0 then∫ ∞

0

(e−t − e−tz)
dt

t
= log z

Solution Observe that the integrand is analytic as t → 0 so the integral is well defined. One can
take the derivative of this function with respect to z and show that it is equal to 1/z. This shows
that it agrees with the logarithm up to a constant when Re(z) > 0.

I couldn’t see how this relates back to residues. I appears you don’t need to shew anything.

Here is actually what they had in mind.

Remarks on Whittaker and Watson’s solution They use that a function is analytic and ap-
ply the Cauchy integral formula... I will type this up when I get some time.

6. (Whittaker and Watson, 6.24,2) If 0 ≤ z ≤ 1 and −π < a ≤ π then∫ ∞

0

tz−1

t+ eia
dt =

πei(z−1)a

sin(πz)

Solution This is another “keyhole” contour since there is a branch cut. One again gets

(1− e2πi(z−1))

∫ ∞

0

tz−1

t+ eia
dt = 2πiRes(

tz−1

t+ eia
; t = −eia) = 2πi(ei(a+π)(z−1))

which tells us ∫ ∞

0

tz−1

t+ eia
dt = 2πi

ei(a(z−1)eiπz(−1)

1− e2πiz

= −2πi
ei(a(z−1)

e−iπz − eiπz

= −2πi
ei(a(z−1)

−2i sin(πz)

=
πei(z−1)a

sin(πz)
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7. (Whittaker and Watson 6.24, 1, pg118) If 0 < a < 1 show that∫ ∞

0

xa−1

1 + x
dx = π csc aπ

Solution Yet another “keyhole” problem. Using the difference in phase we get

(1− e(a−1)2πi)

∫ ∞

0

xa−1

1 + x
dx = 2πie(a−1)πi = −2πieaπi.

Using e(a−1)2πi = e2πai we get∫ ∞

0

xa−1

1 + x
dx = 2πi

eaπi

1− e2aπi
= 2πi

1

−eaπi + e−aπi
=

2πi

−2i sin(aπ)
=

−π

sin(aπ)

Note that in computing the residue we used eiπ = −1.

8. (Whittaker and Watson, 6.24, 4)Show that if −1 < p < 1 and −π < λ < π we have∫ ∞

0

x−pdx

1 + 2x cos(λ) + x2
=

π

sin(pπ)

sin(pλ)

sin(λ)

Solution Keyhole. The trick is to observe that

1 + 2x cos(λ) + x2 = (x+ eiλ)(x+ e−iλ).

If we let A =
∫∞
0

x−pdx
1+2x cos(λ)+x2 we get Using monodromy and decaying of the portions of the

integral at infinity, we get∫
Contour

= (1− e−p2πi)A = 2ie−pπi sin(pπ)A

On the other hand, we may compute the residue

2πi

[
Res(

z−p

(z + eiλ)(z + e−iλ)
; z = −eiλ) + Res(

z−p

(z + eiλ)(z + e−iλ)
; z = −e−iλ)

]
.

= 2πi

(
(−eiλ)−p

(−eiλ + e−iλ)
+

(−e−iλ)−p

(−e−iλ + eiλ)

)
= 2πi

(
(−eiλ)−p

−2i sin(λ)
+

(−e−iλ)−p

2i sin(λ)

)
= π

e−iπp(−e−iλp + e+iλp)

2i sin(λ)

= πe−iπp sin(λp)2i

sin(λ)

which gives

A = π
sin(λp)

sin(pπ) sin(λ)

9. (Whittaker and Watson, 6.21, Example 3) Let n be a positive integer. Show that∫ 2π

0

ecos(θ) cos(nθ − sin θ)dθ =
2π

n!
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Solution We convert the real periodic integral into a contour integral.∫ 2π

0

ecos(θ) cos(nθ − sin(θ))dθ = Re

∫ 2π

0

ecos(θ)ei(nθ−sin(θ))dθ

= Re

∫ 2π

0

ecos(θ)−i sin(θ)einθdθ

= Re

∫ 2π

0

ee
−iθ

(eiθ)ndθ

= Re−
∫ −2π

0

ee
iϕ

(e−iϕ)ndθ

= Re

∫ 0

−2π

ee
iϕ

(e−iϕ)ndθ

= Re

∫ 2π

0

ee
iϕ

(e−iϕ)ndθ

= Re i

∮
γ

ez

zn+1

dz

i

= 2πRes(
ez

zn+1
; z = 0) =

2π

n!
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