Master's Level

1. (Whittaker and Watson, $6.24,3$) If $-1<z<3$ then

$$
\int_{0}^{\infty} \frac{x^{z}}{\left(1+x^{2}\right)^{2}} d x=\frac{\pi(1-z)}{4 \cos (\pi z / 2)}
$$

Figure 1: A bad drawing of the key-hole contour you need to use for the first problem.
Solution I am going to replace z with t to remind me that it is real. We will use z for the complex variable. Let $f(z)=\frac{z^{t}}{\left(1+z^{2}\right)^{2}}$. We use the "keyhole" contour and the branch of the log where $\operatorname{Arg}(z) \in[0,2 \pi)$. We have

$$
\int_{I_{R, r}+I I_{R}+I I I_{R, r}+I V_{r}} f(z) d z=2 \pi i(\operatorname{Res}(f ; z=i)+\operatorname{Res}(f ; z=-i))
$$

We will use the notation \sum Res for the right hand side of this equality.

- Estimate on outer circle:

$$
\begin{aligned}
\left|\int_{I I_{R}} \frac{z^{t}}{\left(1+z^{2}\right)^{2}} d z\right| & \leq \int_{I I_{R}} \frac{\left|z^{t}\right|}{\left|1+z^{2}\right|^{2}}|d z| \\
& \leq \frac{R^{t}}{\left(R^{2}-1\right)^{2}} 2 \pi R \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

The vanishing follows from the fact that the last term is $O\left(R^{t+1-4}\right)$ as $R \rightarrow \infty$ with $t<3$.

- Estimate on the inner circle:

$$
\left|\int_{I V_{r}} \frac{z^{t}}{\left(1+z^{2}\right)^{2}} d z\right| \leq \frac{r^{t}}{\left(1-r^{2}\right)^{2}} 2 \pi r \rightarrow 0 \text { as } r \rightarrow 0
$$

- Computation of residues: Using $f(z)=z^{t} /(z-i)^{2}(z+i)^{2}$ we get that

$$
\begin{aligned}
\operatorname{Res}(f ; z=i) & =\frac{1}{2 \pi i} \oint_{\partial D_{r}(i)} \frac{z^{t}}{(z-i)^{2}(z+i)^{2}} d z \\
& =\frac{d}{d z}\left[\frac{z^{t}}{(z+i)^{2}}\right]_{z=i} \\
& =\frac{-1}{4}\left(i^{t-1} t+i^{t+1}\right) \\
\operatorname{Res}(f ; z=-i) & =\frac{1}{2 \pi i} \oint_{\partial D_{r}(-i)} \frac{z^{t}}{(z-i)^{2}(z+i)^{2}} d z \\
& =\frac{d}{d z}\left[\frac{z^{t}}{(z-i)^{2}}\right]_{z=-i} \\
& =\frac{-1}{4}\left((-i)^{t-1} t+(-i)^{t+1}\right)
\end{aligned}
$$

The sum of the residues \sum Res then satisfies

$$
\left.-4 \sum \operatorname{Res}=2 e^{\pi i t} \sin (\pi t / 2)\right)(1-t)
$$

This computation took me 9 lines which I'm omitting. In these computations we are constantly using things like $1+e^{2 i a}=e^{i a}\left(e^{-i a}+e^{i a}\right)=2 e^{i a} \cos (a)$. Equivalently, one can just expan everything out in terms of sine and cosine using Euler's formula and watch things cancel.

Using the monodromy we see that

$$
\begin{aligned}
& \left(1-e^{2 \pi i t}\right) \int_{0}^{\infty} \frac{x^{t}}{\left(1+x^{2}\right)^{2}} d x=2 \pi i \sum \operatorname{Res} \\
\Longrightarrow \quad & -i e^{i \pi t}(4 \sin (\pi t / 2) \cos (\pi t / 2)) \int_{0}^{\infty} \frac{x^{t}}{\left(1+x^{2}\right)^{2}} d x=2 \pi i \cdot \frac{-1}{4} \cdot 2 e^{\pi i t} \sin (\pi t / 2)(1-t) \\
\Longrightarrow \quad & \int_{0}^{\infty} \frac{x^{t}}{\left(1+x^{2}\right)^{2}} d x=\frac{\pi(1-t)}{4 \cos (\pi t / 2)}
\end{aligned}
$$

The computation of the left hand side used that $\sin (\theta)=2 \sin (\theta / 2) \cos (\theta / 2)$.
2. (Whittaker and Watson, 6.21, Example 4) Let $a>b>0$ be real numbers. Show that

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos (\theta))^{2}}=\frac{2 \pi a}{\left(a^{2}-b^{2}\right)^{3 / 2}}
$$

Solution We turn the computation into a residue integral. If $z=e^{i \theta}$ then $d \theta=d z / i z$:

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos (\theta))^{2}} & =\oint_{\partial D_{1}(0)} \frac{1}{\left(a+\frac{b}{2}\left(z+\frac{1}{z}\right)\right)^{2}} \frac{d z}{i z} \\
& =2 \pi \sum\left(\text { residues of } \frac{1}{\left(a+\frac{b}{2}\left(z+\frac{1}{z}\right)\right)^{2}} \frac{1}{z} \text { inside unit disc }\right)
\end{aligned}
$$

It remains to compute the residues. We have

$$
\frac{1}{\left(a+\frac{b}{2}\left(z+\frac{1}{z}\right)\right)^{2}} \frac{1}{z}=\frac{z}{\left(a z+\frac{b}{2}\left(z^{2}+1\right)\right)^{2}}=\frac{4}{b^{2}}\left[\frac{z}{\left(z^{2}+2(a / b) z+1\right)^{2}}\right]
$$

Note that since $a>b>0$ we have $a / b>1$. The roots of the denominator are $(a / b) \pm \sqrt{(a / b)^{2}-1}$ which are both real. One finds that $(a / b)+\sqrt{(a / b)^{2}-1}>1$ and $(a / b)-\sqrt{(a / b)^{2}-1}<1$. To
see this second inequality, write $a / b=1+\varepsilon$, then one can see that $(1+\varepsilon)-\sqrt{(1+\varepsilon)^{2}-1}=$ $(1+\varepsilon)-\sqrt{\varepsilon(2+\varepsilon)}<1+\varepsilon-\sqrt{\varepsilon^{2}}=1$.
It remains to compute the residue at $z=(a / b)-\sqrt{(a / b)^{2}-1}$.
Let $c=a / b$. Then

$$
\frac{4}{b^{2}}\left[\frac{z}{\left(z^{2}+2 c z+1\right)^{2}}\right]=\frac{4}{b^{2}}\left[\frac{z}{\left(z-\left(c+\sqrt{c^{2}-1}\right)\right)^{2}\left(z-\left(c-\sqrt{c^{2}-1}\right)\right)^{2}}\right]
$$

and the residue is

$$
\frac{4}{b^{2}} \frac{d}{d z}\left[\frac{z}{\left(z-\left(c+\sqrt{c^{2}-1}\right)\right)^{2}}\right]_{z=\left(c-\sqrt{c^{2}-1}\right.} .
$$

Computing this out gives

$$
2 \pi \cdot \frac{4}{b^{2}} \frac{c}{4\left(\sqrt{c^{2}-1}\right)^{3}}=\frac{2 \pi a}{a^{2}-b^{2}}
$$

(I wrote this last line out in four lines on my paper)
3. (Whittaker and Watson, $6.23,2$) If $a>0$ and $b>0$ show that

$$
\int_{-\infty}^{\infty} \frac{x^{4} d x}{\left(a+b x^{2}\right)^{4}}=\frac{\pi}{16 a^{3 / 2} b^{5 / 2}}
$$

Figure 2: The semi-circle contour you need to use for this problem.
Solution For this problem we use an upper semicircle to relate our improper integral to our contour integral. Note that because $\frac{z^{4}}{\left(a+b z^{2}\right)^{4}} \sim 1 / b^{4} z^{4}$ as $|z| \rightarrow \infty$ we have that

$$
\lim _{R \rightarrow \infty} \int_{I I_{R}} \frac{z^{4}}{\left(a+b z^{2}\right)^{4}} d z=0
$$

This implies that

$$
\int_{-\infty}^{\infty} \frac{x^{4} d x}{\left(a+b x^{2}\right)^{4}}=\lim _{R \rightarrow \infty} \int_{I_{R}+I I_{R}} \frac{z^{4} d z}{\left(a+b z^{2}\right)^{4}}=\sum \operatorname{Res}
$$

Since $a+b x^{2}=b\left(x-i(a / b)^{1 / 2}\right)(x+i(a / b))^{1 / 2}$, we only have one residue and this gives

$$
\int_{-\infty}^{\infty} \frac{x^{4} d x}{\left(a+b x^{2}\right)^{4}}=2 \pi i \operatorname{Res}\left(\frac{z^{4}}{b^{4}\left(z^{2}+\frac{a}{b}\right)^{4}} ; z=i \sqrt{\frac{a}{b}}\right)
$$

We just need to compute the series of $z^{4} /(z+c)^{4}$ for for $c=i \sqrt{\frac{a}{b}}$ out to $(z-c)^{3}$ in order to compute the residue. The series of $z^{4} /(z+c)^{4}$ at $z=c$ is
$z^{4} /(z+c)^{4}=\frac{1}{16}+\left(\frac{1}{8 c}\right)(-c+z)+\left(\frac{1}{32 c^{2}}\right)(-c+z)^{2}+\left(-\frac{1}{32 c^{3}}\right)(-c+z)^{3}+\left(\frac{3}{256 c^{4}}\right)(-c+z)^{4}+\left(-\frac{1}{256 c^{6}}\right)(-c+z)^{6}+\cdots$
(I used sage here because I'm lazy, the command latex will export output as latex. The command show, shows the display as it would in latex.)

Using $c=i \sqrt{a / b}$ and the third coefficient gives our residue:

$$
2 \pi i \cdot \frac{1}{b^{4}} \cdot \frac{-1}{32 c^{3}}=\frac{\pi}{16} \frac{1}{b^{4}(a / b)^{3 / 2}}
$$

4. (Whittaker and Watson, $6.22,1$) Show that if $a>0$ then

$$
\int_{0}^{\infty} \frac{\cos (x)}{x^{2}+a^{2}} d x=\frac{\pi}{2 a} e^{-a}
$$

Solution We have

$$
\int_{0}^{\infty} \frac{\cos (x)}{x^{2}+a^{2}} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos (x)}{x^{2}+a^{2}} d x
$$

since the function is even.
We then do the trick where we replace $\cos (x)$ by $e^{i x}$ and then take the real part of the result. For the integral $\int_{-\infty}^{\infty} e^{i x} /\left(x^{2}+a^{2}\right) d x$ we use the usual semi-circle in the upper-half plane. This gives

$$
\frac{1}{2} \int_{-\infty}^{\infty} e^{i x} /\left(x^{2}+a^{2}\right) d x=\frac{1}{2} \cdot 2 \pi i \operatorname{Res}\left(\frac{e^{i z}}{(z-i a)(z+i a) ; z=i a}\right)=\left.\pi i \cdot \frac{e^{i z}}{z+i a}\right|_{z=i a}=\frac{\pi e^{-a}}{2 a}
$$

Ph.D. Level

5. (Whittaker and Watson, 6.22) If the $\operatorname{Re} z>0$ then

$$
\int_{0}^{\infty}\left(e^{-t}-e^{-t z}\right) \frac{d t}{t}=\log z
$$

Solution Observe that the integrand is analytic as $t \rightarrow 0$ so the integral is well defined. One can take the derivative of this function with respect to z and show that it is equal to $1 / z$. This shows that it agrees with the logarithm up to a constant when $\operatorname{Re}(z)>0$.
I couldn't see how this relates back to residues. I appears you don't need to shew anything.
Here is actually what they had in mind.
Remarks on Whittaker and Watson's solution They use that a function is analytic and apply the Cauchy integral formula... I will type this up when I get some time.
6. (Whittaker and Watson, 6.24,2) If $0 \leq z \leq 1$ and $-\pi<a \leq \pi$ then

$$
\int_{0}^{\infty} \frac{t^{z-1}}{t+e^{i a}} d t=\frac{\pi e^{i(z-1) a}}{\sin (\pi z)}
$$

Solution This is another "keyhole" contour since there is a branch cut. One again gets

$$
\left(1-e^{2 \pi i(z-1)}\right) \int_{0}^{\infty} \frac{t^{z-1}}{t+e^{i a}} d t=2 \pi i \operatorname{Res}\left(\frac{t^{z-1}}{t+e^{i a}} ; t=-e^{i a}\right)=2 \pi i\left(e^{i(a+\pi)(z-1)}\right)
$$

which tells us

$$
\begin{aligned}
\int_{0}^{\infty} \frac{t^{z-1}}{t+e^{i a}} d t & =2 \pi i \frac{e^{i(a(z-1)} e^{i \pi z}(-1)}{1-e^{2 \pi i z}} \\
& =-2 \pi i \frac{e^{i(a(z-1)}}{e^{-i \pi z}-e^{i \pi z}} \\
& =-2 \pi i \frac{e^{i(a(z-1)}}{-2 i \sin (\pi z)} \\
& =\frac{\pi e^{i(z-1) a}}{\sin (\pi z)}
\end{aligned}
$$

7. (Whittaker and Watson $6.24,1, \operatorname{pg} 118$) If $0<a<1$ show that

$$
\int_{0}^{\infty} \frac{x^{a-1}}{1+x} d x=\pi \csc a \pi
$$

Solution Yet another "keyhole" problem. Using the difference in phase we get

$$
\left(1-e^{(a-1) 2 \pi i}\right) \int_{0}^{\infty} \frac{x^{a-1}}{1+x} d x=2 \pi i e^{(a-1) \pi i}=-2 \pi i e^{a \pi i}
$$

Using $e^{(a-1) 2 \pi i}=e^{2 \pi a i}$ we get

$$
\int_{0}^{\infty} \frac{x^{a-1}}{1+x} d x=2 \pi i \frac{e^{a \pi i}}{1-e^{2 a \pi i}}=2 \pi i \frac{1}{-e^{a \pi i}+e^{-a \pi i}}=\frac{2 \pi i}{-2 i \sin (a \pi)}=\frac{-\pi}{\sin (a \pi)}
$$

Note that in computing the residue we used $e^{i \pi}=-1$.
8. (Whittaker and Watson, $6.24,4$)Show that if $-1<p<1$ and $-\pi<\lambda<\pi$ we have

$$
\int_{0}^{\infty} \frac{x^{-p} d x}{1+2 x \cos (\lambda)+x^{2}}=\frac{\pi}{\sin (p \pi)} \frac{\sin (p \lambda)}{\sin (\lambda)}
$$

Solution Keyhole. The trick is to observe that

$$
1+2 x \cos (\lambda)+x^{2}=\left(x+e^{i \lambda}\right)\left(x+e^{-i \lambda}\right)
$$

If we let $A=\int_{0}^{\infty} \frac{x^{-p} d x}{1+2 x \cos (\lambda)+x^{2}}$ we get Using monodromy and decaying of the portions of the integral at infinity, we get

$$
\int_{\text {Contour }}=\left(1-e^{-p 2 \pi i}\right) A=2 i e^{-p \pi i} \sin (p \pi) A
$$

On the other hand, we may compute the residue

$$
\begin{aligned}
& 2 \pi i\left[\operatorname{Res}\left(\frac{z^{-p}}{\left(z+e^{i \lambda}\right)\left(z+e^{-i \lambda}\right)} ; z=-e^{i \lambda}\right)+\operatorname{Res}\left(\frac{z^{-p}}{\left(z+e^{i \lambda}\right)\left(z+e^{-i \lambda}\right)} ; z=-e^{-i \lambda}\right)\right] . \\
= & 2 \pi i\left(\frac{\left(-e^{i \lambda}\right)^{-p}}{\left(-e^{i \lambda}+e^{-i \lambda}\right)}+\frac{\left(-e^{-i \lambda}\right)^{-p}}{\left(-e^{-i \lambda}+e^{i \lambda}\right)}\right) \\
= & 2 \pi i\left(\frac{\left(-e^{i \lambda}\right)^{-p}}{-2 i \sin (\lambda)}+\frac{\left(-e^{-i \lambda}\right)^{-p}}{2 i \sin (\lambda)}\right) \\
= & \pi \frac{e^{-i \pi p}\left(-e^{-i \lambda p}+e^{+i \lambda p}\right)}{2 i \sin (\lambda)} \\
= & \pi e^{-i \pi p} \frac{\sin (\lambda p) 2 i}{\sin (\lambda)}
\end{aligned}
$$

which gives

$$
A=\pi \frac{\sin (\lambda p)}{\sin (p \pi) \sin (\lambda)}
$$

9. (Whittaker and Watson, 6.21, Example 3) Let n be a positive integer. Show that

$$
\int_{0}^{2 \pi} e^{\cos (\theta)} \cos (n \theta-\sin \theta) d \theta=\frac{2 \pi}{n!}
$$

Solution We convert the real periodic integral into a contour integral.

$$
\begin{aligned}
\int_{0}^{2 \pi} e^{\cos (\theta)} \cos (n \theta-\sin (\theta)) d \theta & =\operatorname{Re} \int_{0}^{2 \pi} e^{\cos (\theta)} e^{i(n \theta-\sin (\theta))} d \theta \\
& =\operatorname{Re} \int_{0}^{2 \pi} e^{\cos (\theta)-i \sin (\theta)} e^{i n \theta} d \theta \\
& =\operatorname{Re} \int_{0}^{2 \pi} e^{e^{-i \theta}}\left(e^{i \theta}\right)^{n} d \theta \\
& =\operatorname{Re}-\int_{0}^{-2 \pi} e^{e^{i \phi}}\left(e^{-i \phi}\right)^{n} d \theta \\
& =\operatorname{Re} \int_{-2 \pi}^{0} e^{e^{i \phi}}\left(e^{-i \phi}\right)^{n} d \theta \\
& =\operatorname{Re} \int_{0}^{2 \pi} e^{e^{i \phi}}\left(e^{-i \phi}\right)^{n} d \theta \\
& =\operatorname{Re} i \oint_{\gamma} \frac{e^{z}}{z^{n+1}} \frac{d z}{i} \\
& =2 \pi \operatorname{Res}\left(\frac{e^{z}}{z^{n+1}} ; z=0\right)=\frac{2 \pi}{n!}
\end{aligned}
$$

