
Dupuy — Complex Analysis — Spring 2017 — Homework 05

I am following some solutions from a course given by Pedro Embid at UNM. He made some great
notes.

Conformal Maps

1. Find the points where w = f(z) is conformal if

(a) w = cos(z)

(b) w = z5 − 5z

(c) w = 1/(z2 + 1)

(d) w =
√
z2 + 1.

Solution The places where the map is conformal is where the derivative is non-zero and doesn’t
have a pole or branch point.

(a) If w = cos(z), dw/dz = − sin(z) therefore, dw/dz = 0 if and only if z ∈ πZ. Hence, w = cos(z)
is conformal for all z ̸= nπ, n ∈ Z.

(b) If w = z5 − 5z then dw/dz = 5(z4 − 1) which means dw/dz = 0 only when z = ±1,±i which
means w = z4 − 5z is conformal when z ∈ C \ −1, 1, i,−i}.

(c) w = 1/(z2 + 1) is differentiable when z ̸= ±i, and dw
dz = −2z

(z2+1)2 which means dw/dz = 0 if

and only if z = 0. So w = 1/(z2 + 1) is conformal on C \ {0,±i}.
(d) For w =

√
z2 + 1 =

√
(z − i)(z + i) we have two branch points z = ±i, so we have to introduce

branch cuts. The answer depends on the branch of
√
z2 + 1 one has selected. Assume we take

branch from i to∞ and−i to∞ as indicated in the figure (so that w =
√
z2 + 1 is differentiable

at zero).

Then on Ω = C \ {z = iy : |y| ≥ 1} and w =
√
z2 + 1 is differentiable and dw

dz = z√
z2+1

so

dw/dz = 0 if and only if z = 0. We conclude that w =
√
z2 + 1 is conformal on Ω \ {0}.

2. Find a conformal map of the strip 0 < Re z < 1 onto the unit disc |w| < 1 in such a way that
z = 1/2 goes to w = 0 and z = ∞ goes to w = 1.

i

−i

Figure 1: The branch cuts for w =
√
z2 + 1.
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Figure 2: The conformal mapping f(z) = z
2−z .

Solution We worked this out in class: f1(z) = iπz rotates the horizontal strip and scales it.
f2(z) = ez moves the strip to the upper half plane. f2(z) = −(z − i)/(z + i) is the negative of the
Cayley transformation.

f(z) = f3(f2(f1(z))) = − eiπz − i

eiπz + 1

3. Find the Möbius transformation that maps the left have plane {z ∈ C : Re z < 1} to the unit disc
{w ∈ C : |w| < 1} and has z = 0 and z = 1 as fixed points.

Solution We use that w−1
w = k z−1

z hence 0 7→ 0, 1 7→ 1 and if ∞ 7→ −1 we need k = 2 so that
w = z

2−z . The conformal map is pictured in figure 2.

4. Find a conformal map from the following regions onto the unit disc D = {z : |z| < 1}

(a) A = {z : |z| < 2,Arg(z) ∈ (0, π/4)}
(b) B = {z : Re(z) > 2}
(c) C = {z : −1 < Re(z) < 1}
(d) D′ = {z : |z| < 1 and Re z < 0}

Solution These can be done with the handout that Christelle handed out with the conformal
maps from Marsden and Hoffman book

(a) We did this in class:

f(z) = f4(f3(f2(f1(z)))) =

(
1+z4/16
1−z4/16

)2

− i(
1+z4/16
1−z4/16

)2

+ i
.

(b) f1(z) = z − 2 is a translation to the plane with Re z > 0. f2(z) = T (iz)/i = (z − 1)/(z +1) is
a conjugate of the Cayley transformation. The composition is:

f(z) = f2(f1(z)) =
z − 3

z − 1
.

(c) f1(z) = (z+2)/2 translates and scales. f2(z) = − eiπz−1
eiπz+1 is the conformal map from the second

problem:

f(z) =
eiπ(z+2)/2 − i

eiπ(z+2)/2 + i
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(d) f1(z) = −iz rotated the left half disc to the upper half disc. We then apply part (a)

f(z) =

(
1−iz
1+iz

)2

− i(
1−iz
1+iz

)2

+ i
.

5. Let D be the unit disc. Let f : D → D be a conformal map.

(a) If f(0) = 0 show that f(z) = ωz for some ω ∈ ∂D.

(b) If f(0) ̸= 0 show that there exists some a ∈ D and ω ∈ ∂D such that

f(z) = ω
z − a

1− az
.

Solution (a) This is exactly the conclusion of Schwarz Lemma.

(b) Let g : D → D be a conformal map and suppose that g(0) = a. Suppose h(z) = z−a
1−az is a

conformal map from D to D. If this is the case then because h(a) = 0 we have h ◦ g : D → D
a conformal map with h(g(0)) = 0 which implies h ◦ g(z) = ω−1z with |ω| = 1 by the first
part. This implies that ωh(z) = f(z) is an inverse to g(z) as in the statement of the problem.

It is hence enough to show that |h(z)| ≤ 1 for |z| ≤ 1.

Writing z = x+ iy and a = α+ iβ gives

| z − a

1− az
| = (x− α)2 + (y − β)2

(1− αx− βy)2 + (yα− βx)2

This is a mess. Don’t do this.

This dude is a Blashke factor (Look at Proposition 9.1.1 of Green and Krantz). If |z| = 1
then |z| = 1 and |zz| = 1 this means∣∣∣∣ z − a

1− az

∣∣∣∣ = 1

1/|z|

∣∣∣∣ z − a

1− az

∣∣∣∣ = |z − a|
|z − a|

= 1

and since the function h(z) is analytic on all of D and hence we can use the maximum modulus
principle to conclude that |h(z)| < 1

6. (a) Show that PSL2(Z) is generated by S(z) = −1/z and T (z) = z + 1 and hence has the
presentation

⟨S, T : S2 = 1, (ST )3 = 1⟩.

(b) Show that a fundamental domain1 for this action is the complement of the unit disc in a
vertical strip of length 1 centered around zero in the upper half plane. In other words

Ω = {z : |z| ≥ 1 and − 1/2 ≤ Re(z) ≤ 1/2}

is a fundamental domain for this action.

(c) Show that the following points are fixed points of Ω with the following stabilizers:

i. Stab(i) = {1, S}
ii. Stab(e2πi/3) = {1, ST, (ST )2}
iii. Stab(eπi/3) = {1, TS, (TS)2}
(Note: this exercise gives you an example of an action that is not free.)

1A fundamental domain for an action Γ×X → X is a closed subset Ω ⊂ X such that

i. X =
∪

γ∈Γ γ(Ω)

ii. For all γ ̸= 1 the set γ(Ω) ∩ Ω has empty interior.

Note that this definition is different from what I had originally said in class. We had our fundamental domains have the
property that γ(Ω) ∩ Ω = ∅. Unfortunately, as this example shows, we can’t always arrange for this.

3



Solution (a) Clearly S2(z) = z. We have S ◦ T (z) = −1
z+1 , and hence

(S ◦ T )2(z) =
−1

−1
z+1 + 1

=
−(z + 1)

−1 + z + 1
= −z + 1

z

(S ◦ T )3(z) = −
−1
z+1 + 1

−1
z+1

=
−1 + (z + 1)

1
= z.

It is enough to show that ⟨S, T ⟩ ⊃ PSL2(Z).

If gcd(a, b) ̸= 1 then ad− bc ̸= 1, which is a contradiction. Similarly, gcd(c, d) = 1.

The following algorithm find a presentation of

f(z) =
az + b

cz + d
.

• (Division Algorithm Step) If |a| ≤ |b| then write b = aq + r and consider

f ◦ T q(z) =
a(z − q) + b

c(z − q) + d
=

az + r

cz − cq + d
.

• If |b| < |a| consider

f ◦ S(z) = −a+ bz

−c+ dz
.

This reduces us to the previous division algorithm.

• By using these two steps we may reduce f(z) to a transformation of the form

f(z) =
az

cz + d
,

since we must have ad− c0 = 1 we must have a = d = ±1 and without loss of generality
we can assume a = 1 (since we are working projectively)

f(z) =
z

cz + 1
,

By applying f ◦ S we are reduced to considering

−1

−c+ z

which by translation reduces to
−1

z

which is inverted by S.

(b) We need to check the two axioms of a fundamental domain from the footnote.

i. We need to show that H is covered by {γ(Ω) : γ ∈ PSL2(Z)}. By translation, it suffices
to show that the {z : |z| ≤ 1 and Im z > 0} is covered by these sets.

ii. We can readily see that T (Ω)∩Ω is just along the line |z| = 1/2. It remains to check that
S(Ω) ∩ Ω has empty interior. This is the case since only the circle |z| = 1 is fixed by S.

(c) We will make use of the equation az+b
cz+d = z which becomes

cz2 + (d− a)z − b = 0. (1)

Also, the only fixed points Ω must be on the boundary. Also, we know that z such that
|Re(z)| = 1/2 and |z| > 1 are not fixed by S or T so it must be the case that |z| = 1. From
equation (1) we know that any fixed point z is algebraic of degree two. The only roots of
unity in the upper half plane of degree two are i, ρ = eπi/3 and −ρ = e2πi/3 = S(ρ) = T−1(ρ).
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i. In the case when z = i, the fixed point equations reduce to b+ c = 0 and d− a = 0 which
implies a = d and b = −c. From this we find that 1 = ad− bc = a2+ b2 only has solutions
when (a, b) = (±1, 0), (0,±1) which give us S and the identity respectively.

ii. The observations that ρ and −ρ are related by S and T give use two things. First

Stab(ρ) = S−1 Stab(ρ)S.

and so we only need to compute the stabilizers of ρ. Second, it tells us that TS ∈ Stab(ρ).
We can also see that this is an element of order three.
Suppose that (aρ+ b)/(cρ+d) = ρ Since Im(az+b

cz+d ) =
x

|cz+d|2 we must have that 1/2
|cz+d|2 =

√
3/2 which implies that |cρ+ d| < 1

(Finish writing this down)
Another approach would be to look at the minimal polynomial of ρ = eπi/3, which is
z2 − z + 1 = 0. We know that this polynomial must divide the fixed point polynomial.
This implies things like (d − a)/c = −1 and b/c = 1. These give c = b and d − a = −b
this means our matrix is of

Elliptic Functions

7. Show that

℘Λ(z) =
1

z2
+

∑
λ∈Λ∗

[
1

(z − λ)2
− 1

λ2

]
is elliptic with period lattice Λ.

Solution (Knapp) It is easy to show that ℘′(z) is elliptic with period lattice Λ. Also observe
that ℘(z) = ℘(−z). Let Λ = Zω1 + Zω2. This means ℘′(z + ω1) − ℘′(z) = 0 which implies
℘(z + ω1)− ℘(z) = C and evaluating at z = −ω1

2 shows that C = 0. Similarly for ω2.

8. For a lattice Λ ⊂ C and m ≥ 3 define Gm = Gm(Λ) =
∑

λ∈Λ\{0} λ
−m.

(a) Show that ℘(z)− 1
z2 =

∑∞
k=1(k + 1)Gk+2z

k.2

(b) Conclude that
℘′(z)2 − 4℘(z)3 + g2℘(z) + g2 = O(z2),

as z → 0, which shows that ℘′(z)2 − 4℘(z)3 + g2℘(z) + g2 is analytic at the origin of C. Here
g2 = 60G4 and g3 = 140G6.

(c) Conclude that ℘′(z)2 − 4℘(z)3 + g2℘(z) + g2 is constant. (Hint: use that elliptic functions
without poles are constant.)

(d) Show the constant in the previous number is zero.

Solution (a) We have

1

(z − λ)2
=

1

λ

∞∑
n=0

(n+ 1)zn

λn+1
= 1/λ2 + 2z/λ3 + 3z2/λ4 + · · ·

This shows that

℘(z)− 1

z2
=

∑
λ∈Λ∗

∞∑
n=1

(n+ 1)
zn

λn+2

=
∞∑

n=1

(n+ 1)zn
∑
λ∈Λ∗

1

λn+2
,

where we used the footnote.

2You may need to use that you can interchange some series. If fn(z) =
∑

a
(n)
j zj and Aj =

∑∞
n=0 a

(n)
j converges then∑∞

n=0 fn(z) =
∑∞

j=0 Ajz
j .
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(b) (Check using Sage or a long by-hand computation)

(c) ℘′(z)2 − 4℘(z)3 + g2℘(z) + g2 is an elliptic function without poles. Hence it is constant.

(d) Evaluating at say ω1/2 shows that this constant must be zero.

9. The zeros of ℘(z)− c are simple with precisely double zeros at the points congruent to ω1/2, (ω1 +
ω2)/2, ω2/2. (Hint: what are the zeros of ℘′(z) and what does this mean?)

Solution As usual, the double points are where the derivative vanishes.

Geometric Argument: if the ℘′(z) vanishes then by our equation we have 4℘(z)3− g2℘(z)−g2 = 0.
There are precisely the 2-torsion points which under Weierstrass uniformization group isomorphism
correspond to ω1/2, (ω1 + ω2)/2, ω2/2 in a fundamental domain of C/Λ.
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