Dupuy — Complex Analysis — Spring 2017 — Homework 05

I am following some solutions from a course given by Pedro Embid at UNM. He made some great

notes.

Conformal Maps

1. Find the points where w = f(z) is conformal if

Solution The places where the map is conformal is where the derivative is non-zero and doesn’t
have a pole or branch point.

(a)

If w = cos(z), dw/dz = — sin(z) therefore, dw/dz = 0 if and only if z € 7Z. Hence, w = cos(z)
is conformal for all z # nmw, n € Z.

If w = 25 — 5z then dw/dz = 5(z* — 1) which means dw/dz = 0 only when z = +1, +i which
means w = z* — 52 is conformal when 2z € C\ —1,1,4, —i}.

w = 1/(2* 4+ 1) is differentiable when z # +i, and 9% = ﬁ which means dw/dz = 0 if

and only if z = 0. So w = 1/(22 + 1) is conformal on C\ {0, &i}.

For w = /22 + 1 = /(2 — i)(z + i) we have two branch points z = %4, so we have to introduce
branch cuts. The answer depends on the branch of v/22 + 1 one has selected. Assume we take
branch from i to co and —i to oo as indicated in the figure (so that w = v/22 + 1 is differentiable
at zero).

Then on Q = C\ {z =iy : |y| > 1} and w = V2% +1 is differentiable and 4% = — 50

dw/dz = 0 if and only if z = 0. We conclude that w = v/22 + 1 is conformal on Q \ {0}.

2. Find a conformal map of the strip 0 < Rez < 1 onto the unit disc |w| < 1 in such a way that
z=1/2 goes to w =0 and z = co goes to w = 1.
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Figure 1: The branch cuts for w = v/22 + 1.
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Figure 2: The conformal mapping f(z) = 5%.

Solution We worked this out in class: f1(z) = imz rotates the horizontal strip and scales it.
f2(2) = € moves the strip to the upper half plane. fo(z) = —(z —1)/(2z + 1) is the negative of the
Cayley transformation.
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f(2) = fs(fa(fi(2))) =

3. Find the Mébius transformation that maps the left have plane {z € C: Rez < 1} to the unit disc
{w € C:|w| <1} and has z = 0 and z = 1 as fixed points.

Solution We use that “’T_l = k%‘l hence 0 — 0, 1 — 1 and if oo — —1 we need k = 2 so that

5~ The conformal map is pictured in figure 2.
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4. Find a conformal map from the following regions onto the unit disc D = {z : |z] < 1}

(a) A={z:|z| < 2,Arg(z) € (0,7/4)}

(b) B={z:Re(z) > 2}

(c) C={z:—-1<Re(z) <1}

(d) D'={z:]z] <1and Rez < 0}

Solution These can be done with the handout that Christelle handed out with the conformal

maps from Marsden and Hoffman book

(a) We did this in class:
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(b) fi(z) = z—2is a translation to the plane with Rez > 0. fao(z) =T(iz)/i=(2—1)/(z+1) is
a conjugate of the Cayley transformation. The composition is:

f(2) = fa(f3(f2(f1(2)))) =

z—3
f(2) = fa(fi(2)) = a1
(¢) fi(z) = (2+2)/2 translates and scales. fa(z) = — z:;—r} is the conformal map from the second

problem: ‘
ezw(z+2)/2 —

f(z) =

eim(2+2)/2 +1



(d) fi(z) = —iz rotated the left half disc to the upper half disc. We then apply part (a)
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5. Let D be the unit disc. Let f: D — D be a conformal map.

(a) If f(0) =0 show that f(z) = wz for some w € dD.
(b) If f(0) # 0 show that there exists some ¢ € D and w € 9D such that

Solution (a) This is exactly the conclusion of Schwarz Lemma.

z—a

(b) Let g : D — D be a conformal map and suppose that g(0) = a. Suppose h(z) = == is a
conformal map from D to D. If this is the case then because h(a) = 0 we have hog: D — D
a conformal map with A(g(0)) = 0 which implies h o g(z) = w2 with |w| = 1 by the first
part. This implies that wh(z) = f(z) is an inverse to g(z) as in the statement of the problem.
It is hence enough to show that |h(z)| <1 for |z| < 1.

Writing z = x + 4y and a = a + i gives
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T—a:  (1—aw—By) + (ya - fa)?

This is a mess. Don’t do this.

This dude is a Blashke factor (Look at Proposition 9.1.1 of Green and Krantz). If |z| =1
then |z] = 1 and |2Z| = 1 this means

1
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and since the function h(z) is analytic on all of D and hence we can use the maximum modulus
principle to conclude that |h(z)| < 1
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6. (a) Show that PSLy(Z) is generated by S(z) = —1/z and T'(¢) = z + 1 and hence has the
presentation
(S,T:5%=1,(ST)* =1).

(b) Show that a fundamental domain' for this action is the complement of the unit disc in a
vertical strip of length 1 centered around zero in the upper half plane. In other words

Q={z:]z] >1and —1/2 <Re(z) <1/2}

is a fundamental domain for this action.
(c) Show that the following points are fixed points of 2 with the following stabilizers:
i. Stab(z) = {1, S}
ii. Stab(e?™/3) = {1, ST, (ST)?}
iii. Stab(e™/3) = {1,T8,(TS)?}

(Note: this exercise gives you an example of an action that is not free.)

1A fundamental domain for an action I' x X — X is a closed subset Q C X such that
X = U e (@)
ii. For all v # 1 the set v(2) N2 has empty interior.

Note that this definition is different from what I had originally said in class. We had our fundamental domains have the
property that v(22) N Q = 0. Unfortunately, as this example shows, we can’t always arrange for this.



Solution (a) Clearly S?(z) = 2. We have S o T(z) = =%, and hence

I
-1 —(z+1) z+1
(SoT)(2) = — = =
i1 —l+z+ z
L+l 14 (z+1)
(SoT)(z) = - —= =
z+1 1

It is enough to show that (S,T) D PSLy(Z).
If ged(a, b) # 1 then ad — be # 1, which is a contradiction. Similarly, ged(e, d) = 1.
The following algorithm find a presentation of

az+b
o (Division Algorithm Step) If |a| < |b| then write b = aq + r and consider
a(z—q)+b az+r
T9(z) = - .
foT(z) c(z—q)+d cz—cq+d
o If |b| < |a| consider
—a + bz
foSz) ===

This reduces us to the previous division algorithm.
e By using these two steps we may reduce f(z) to a transformation of the form

since we must have ad — c0 = 1 we must have a = d = +1 and without loss of generality
we can assume a = 1 (since we are working projectively)

z

& =a5
By applying f oS we are reduced to considering

-1
—Cc+z

which by translation reduces to
-1

z
which is inverted by S.
(b) We need to check the two axioms of a fundamental domain from the footnote.
i. We need to show that H is covered by {7(f2) : v € PSLy(Z)}. By translation, it suffices
to show that the {z:|z| <1 and Imz > 0} is covered by these sets.

ii. We can readily see that T'(€2) N2 is just along the line |z| = 1/2. It remains to check that
S(©2) N Q has empty interior. This is the case since only the circle |z| =1 is fixed by S.

az+b — » which becomes
cz+d

(¢c) We will make use of the equation
2+ (d—a)z—b=0. (1)

Also, the only fixed points  must be on the boundary. Also, we know that z such that
|Re(z)| = 1/2 and |z| > 1 are not fixed by S or T so it must be the case that |z| = 1. From
equation (1) we know that any fixed point z is algebraic of degree two. The only roots of
unity in the upper half plane of degree two are i, p = e™/% and —p = €>™/3 = S(p) = T~ (p).



i. In the case when z = i, the fixed point equations reduce to b+ c¢ =0 and d — a = 0 which
implies a = d and b = —c. From this we find that 1 = ad — bc = a? 4 b? only has solutions
when (a,b) = (£1,0), (0, £1) which give us S and the identity respectively.

ii. The observations that p and —p are related by S and T give use two things. First

Stab(p) = S~! Stab(p)S.

and so we only need to compute the stabilizers of p. Second, it tells us that T'S € Stab(p).
We can also see that this is an element of order three.

Suppose that (ap+0b)/(cp+d) = p Since Im(‘c’zz_ts) Teztaz We must have that |czl-{-?1\2 =
V/3/2 which implies that |cp +d| < 1

(Finish writing this down)

Another approach would be to look at the minimal polynomial of p = €™/, which is

22 — z+1 = 0. We know that this polynomial must divide the fixed point polynomial.
This implies things like (d — a)/c = —1 and b/c = 1. These give c=band d —a = —b
this means our matrix is of

Elliptic Functions

7. Show that )
Y et ¥
AEA*
is elliptic with period lattice A.

Solution (Knapp) It is easy to show that ¢'(z) is elliptic with period lattice A. Also observe
that p(z) = p(—z). Let A = Zw; + Zws. This means ¢'(z + w1) — ©'(2) = 0 which implies
p(z +w1) — p(z) = C and evaluating at z = =2 shows that C = 0. Similarly for ws.

8. For a lattice A C C and m > 3 define G, = G (A) = 2oy cny oy A

(a) Show that p(z) — % =377 (k + 1)Gry22" 2
(b) Conclude that
©'(2)? = 4p(2)° + g20(2) + g2 = O(2?),
as z — 0, which shows that ¢'(2)? — 49(2)® + gap(2) + g2 is analytic at the origin of C. Here
g2 = 60G, and g3 = 140Gs.

(c) Conclude that ¢'(2)? — 4p(2)% + gap(2) + g2 is constant. (Hint: use that elliptic functions
without poles are constant.)

(d) Show the constant in the previous number is zero.

Solution (a) We have

1 ”"‘1 2 3 2 /14
FESYE XZ =1/0% 4+ 22/0% + 322 /0 +
This shows that
1 > Z"
SCRE S ) SURR
AEA* n=1
= Z n+1)2" Y e
n=1 AEA*

where we used the footnote.

2You may need to use that you can interchange some series. If f,(z) = Za(n)z7 and A; =32 a (n) converges then

35 0 fal2) = X520 Aja.



(b) (Check using Sage or a long by-hand computation)
(c) ¢'(2)? — 4p(2)3 + go2p(2) + g2 is an elliptic function without poles. Hence it is constant.

(d) Evaluating at say w;/2 shows that this constant must be zero.

9. The zeros of p(z) — ¢ are simple with precisely double zeros at the points congruent to wy /2, (w1 +
w9)/2,w2/2. (Hint: what are the zeros of ©’(z) and what does this mean?)

Solution As usual, the double points are where the derivative vanishes.

Geometric Argument: if the g’(z) vanishes then by our equation we have 4p(z)3 — gag(2) — g2 = 0.
There are precisely the 2-torsion points which under Weierstrass uniformization group isomorphism
correspond to wy/2, (w1 + wa)/2,w2/2 in a fundamental domain of C/A.



