Dupuy - Complex Analysis - Spring 2017 - Homework 05

I am following some solutions from a course given by Pedro Embid at UNM. He made some great notes.

Conformal Maps

1. Find the points where $w=f(z)$ is conformal if
(a) $w=\cos (z)$
(b) $w=z^{5}-5 z$
(c) $w=1 /\left(z^{2}+1\right)$
(d) $w=\sqrt{z^{2}+1}$.

Solution The places where the map is conformal is where the derivative is non-zero and doesn't have a pole or branch point.
(a) If $w=\cos (z), d w / d z=-\sin (z)$ therefore, $d w / d z=0$ if and only if $z \in \pi \mathbf{Z}$. Hence, $w=\cos (z)$ is conformal for all $z \neq n \pi, n \in \mathbf{Z}$.
(b) If $w=z^{5}-5 z$ then $d w / d z=5\left(z^{4}-1\right)$ which means $d w / d z=0$ only when $z= \pm 1, \pm i$ which means $w=z^{4}-5 z$ is conformal when $\left.z \in \mathbf{C} \backslash-1,1, i,-i\right\}$.
(c) $w=1 /\left(z^{2}+1\right)$ is differentiable when $z \neq \pm i$, and $\frac{d w}{d z}=\frac{-2 z}{\left(z^{2}+1\right)^{2}}$ which means $d w / d z=0$ if and only if $z=0$. So $w=1 /\left(z^{2}+1\right)$ is conformal on $\mathbf{C} \backslash\{0, \pm i\}$.
(d) For $w=\sqrt{z^{2}+1}=\sqrt{(z-i)(z+i)}$ we have two branch points $z= \pm i$, so we have to introduce branch cuts. The answer depends on the branch of $\sqrt{z^{2}+1}$ one has selected. Assume we take branch from i to ∞ and $-i$ to ∞ as indicated in the figure (so that $w=\sqrt{z^{2}+1}$ is differentiable at zero).
Then on $\Omega=\mathbf{C} \backslash\{z=i y:|y| \geq 1\}$ and $w=\sqrt{z^{2}+1}$ is differentiable and $\frac{d w}{d z}=\frac{z}{\sqrt{z^{2}+1}}$ so $d w / d z=0$ if and only if $z=0$. We conclude that $w=\sqrt{z^{2}+1}$ is conformal on $\Omega \backslash\{0\}$.
2. Find a conformal map of the strip $0<\operatorname{Re} z<1$ onto the unit disc $|w|<1$ in such a way that $z=1 / 2$ goes to $w=0$ and $z=\infty$ goes to $w=1$.

Figure 1: The branch cuts for $w=\sqrt{z^{2}+1}$.

Figure 2: The conformal mapping $f(z)=\frac{z}{2-z}$.

Solution We worked this out in class: $f_{1}(z)=i \pi z$ rotates the horizontal strip and scales it. $f_{2}(z)=e^{z}$ moves the strip to the upper half plane. $f_{2}(z)=-(z-i) /(z+i)$ is the negative of the Cayley transformation.

$$
f(z)=f_{3}\left(f_{2}\left(f_{1}(z)\right)\right)=-\frac{e^{i \pi z}-i}{e^{i \pi z}+1}
$$

3. Find the Möbius transformation that maps the left have plane $\{z \in \mathbf{C}: \operatorname{Re} z<1\}$ to the unit disc $\{w \in \mathbf{C}:|w|<1\}$ and has $z=0$ and $z=1$ as fixed points.

Solution We use that $\frac{w-1}{w}=k \frac{z-1}{z}$ hence $0 \mapsto 0,1 \mapsto 1$ and if $\infty \mapsto-1$ we need $k=2$ so that $w=\frac{z}{2-z}$. The conformal map is pictured in figure 2 .
4. Find a conformal map from the following regions onto the unit disc $D=\{z:|z|<1\}$
(a) $A=\{z:|z|<2, \operatorname{Arg}(z) \in(0, \pi / 4)\}$
(b) $B=\{z: \operatorname{Re}(z)>2\}$
(c) $C=\{z:-1<\operatorname{Re}(z)<1\}$
(d) $D^{\prime}=\{z:|z|<1$ and $\operatorname{Re} z<0\}$

Solution These can be done with the handout that Christelle handed out with the conformal maps from Marsden and Hoffman book
(a) We did this in class:

$$
f(z)=f_{4}\left(f_{3}\left(f_{2}\left(f_{1}(z)\right)\right)\right)=\frac{\left(\frac{1+z^{4} / 16}{1-z^{4} / 16}\right)^{2}-i}{\left(\frac{1+z^{4} / 16}{1-z^{4} / 16}\right)^{2}+i}
$$

(b) $f_{1}(z)=z-2$ is a translation to the plane with $\operatorname{Re} z>0 . f_{2}(z)=T(i z) / i=(z-1) /(z+1)$ is a conjugate of the Cayley transformation. The composition is:

$$
f(z)=f_{2}\left(f_{1}(z)\right)=\frac{z-3}{z-1}
$$

(c) $f_{1}(z)=(z+2) / 2$ translates and scales. $f_{2}(z)=-\frac{e^{i \pi z}-1}{e^{i \pi z}+1}$ is the conformal map from the second problem:

$$
f(z)=\frac{e^{i \pi(z+2) / 2}-i}{e^{i \pi(z+2) / 2}+i}
$$

(d) $f_{1}(z)=-i z$ rotated the left half disc to the upper half disc. We then apply part (a)

$$
f(z)=\frac{\left(\frac{1-i z}{1+i z}\right)^{2}-i}{\left(\frac{1-i z}{1+i z}\right)^{2}+i}
$$

5. Let D be the unit disc. Let $f: D \rightarrow D$ be a conformal map.
(a) If $f(0)=0$ show that $f(z)=\omega z$ for some $\omega \in \partial D$.
(b) If $f(0) \neq 0$ show that there exists some $a \in D$ and $\omega \in \partial D$ such that

$$
f(z)=\omega \frac{z-a}{1-\bar{a} z} .
$$

Solution (a) This is exactly the conclusion of Schwarz Lemma.
(b) Let $g: D \rightarrow D$ be a conformal map and suppose that $g(0)=a$. Suppose $h(z)=\frac{z-a}{1-\bar{a} z}$ is a conformal map from D to D. If this is the case then because $h(a)=0$ we have $h \circ g: D \rightarrow D$ a conformal map with $h(g(0))=0$ which implies $h \circ g(z)=\omega^{-1} z$ with $|\omega|=1$ by the first part. This implies that $\omega h(z)=f(z)$ is an inverse to $g(z)$ as in the statement of the problem. It is hence enough to show that $|h(z)| \leq 1$ for $|z| \leq 1$.
Writing $z=x+i y$ and $a=\alpha+i \beta$ gives

$$
\left|\frac{z-a}{1-\bar{a} z}\right|=\frac{(x-\alpha)^{2}+(y-\beta)^{2}}{(1-\alpha x-\beta y)^{2}+(y \alpha-\beta x)^{2}}
$$

This is a mess. Don't do this.
This dude is a Blashke factor (Look at Proposition 9.1.1 of Green and Krantz). If $|z|=1$ then $|\bar{z}|=1$ and $|z \bar{z}|=1$ this means

$$
\left|\frac{z-a}{1-\bar{a} z}\right|=\frac{1}{1 /|z|}\left|\frac{z-a}{1-\bar{a} z}\right|=\frac{|z-a|}{|\bar{z}-\bar{a}|}=1
$$

and since the function $h(z)$ is analytic on all of D and hence we can use the maximum modulus principle to conclude that $|h(z)|<1$
6. (a) Show that $\mathrm{PSL}_{2}(\mathbf{Z})$ is generated by $S(z)=-1 / z$ and $T(z)=z+1$ and hence has the presentation

$$
\left\langle S, T: S^{2}=1,(S T)^{3}=1\right\rangle
$$

(b) Show that a fundamental domain ${ }^{1}$ for this action is the complement of the unit disc in a vertical strip of length 1 centered around zero in the upper half plane. In other words

$$
\Omega=\{z:|z| \geq 1 \text { and }-1 / 2 \leq \operatorname{Re}(z) \leq 1 / 2\}
$$

is a fundamental domain for this action.
(c) Show that the following points are fixed points of $\bar{\Omega}$ with the following stabilizers:
i. $\operatorname{Stab}(i)=\{1, S\}$
ii. $\operatorname{Stab}\left(e^{2 \pi i / 3}\right)=\left\{1, S T,(S T)^{2}\right\}$
iii. $\operatorname{Stab}\left(e^{\pi i / 3}\right)=\left\{1, T S,(T S)^{2}\right\}$
(Note: this exercise gives you an example of an action that is not free.)

[^0]Solution (a) Clearly $S^{2}(z)=z$. We have $S \circ T(z)=\frac{-1}{z+1}$, and hence

$$
\begin{aligned}
& (S \circ T)^{2}(z)=\frac{-1}{\frac{-1}{z+1}+1}=\frac{-(z+1)}{-1+z+1}=-\frac{z+1}{z} \\
& (S \circ T)^{3}(z)=-\frac{\frac{-1}{z+1}+1}{\frac{-1}{z+1}}=\frac{-1+(z+1)}{1}=z
\end{aligned}
$$

It is enough to show that $\langle S, T\rangle \supset \mathrm{PSL}_{2}(\mathbf{Z})$.
If $\operatorname{gcd}(a, b) \neq 1$ then $a d-b c \neq 1$, which is a contradiction. Similarly, $\operatorname{gcd}(c, d)=1$.
The following algorithm find a presentation of

$$
f(z)=\frac{a z+b}{c z+d}
$$

- (Division Algorithm Step) If $|a| \leq|b|$ then write $b=a q+r$ and consider

$$
f \circ T^{q}(z)=\frac{a(z-q)+b}{c(z-q)+d}=\frac{a z+r}{c z-c q+d} .
$$

- If $|b|<|a|$ consider

$$
f \circ S(z)=\frac{-a+b z}{-c+d z}
$$

This reduces us to the previous division algorithm.

- By using these two steps we may reduce $f(z)$ to a transformation of the form

$$
f(z)=\frac{a z}{c z+d},
$$

since we must have $a d-c 0=1$ we must have $a=d= \pm 1$ and without loss of generality we can assume $a=1$ (since we are working projectively)

$$
f(z)=\frac{z}{c z+1},
$$

By applying $f \circ S$ we are reduced to considering

$$
\frac{-1}{-c+z}
$$

which by translation reduces to

$$
\frac{-1}{z}
$$

which is inverted by S.
(b) We need to check the two axioms of a fundamental domain from the footnote.
i. We need to show that H is covered by $\left\{\gamma(\Omega): \gamma \in \mathrm{PSL}_{2}(\mathbf{Z})\right\}$. By translation, it suffices to show that the $\{z:|z| \leq 1$ and $\operatorname{Im} z>0\}$ is covered by these sets.
ii. We can readily see that $T(\Omega) \cap \Omega$ is just along the line $|z|=1 / 2$. It remains to check that $S(\Omega) \cap \Omega$ has empty interior. This is the case since only the circle $|z|=1$ is fixed by S.
(c) We will make use of the equation $\frac{a z+b}{c z+d}=z$ which becomes

$$
\begin{equation*}
c z^{2}+(d-a) z-b=0 \tag{1}
\end{equation*}
$$

Also, the only fixed points $\bar{\Omega}$ must be on the boundary. Also, we know that z such that $|\operatorname{Re}(z)|=1 / 2$ and $|z|>1$ are not fixed by S or T so it must be the case that $|z|=1$. From equation (1) we know that any fixed point z is algebraic of degree two. The only roots of unity in the upper half plane of degree two are $i, \rho=e^{\pi i / 3}$ and $-\bar{\rho}=e^{2 \pi i / 3}=S(\rho)=T^{-1}(\rho)$.
i. In the case when $z=i$, the fixed point equations reduce to $b+c=0$ and $d-a=0$ which implies $a=d$ and $b=-c$. From this we find that $1=a d-b c=a^{2}+b^{2}$ only has solutions when $(a, b)=(\pm 1,0),(0, \pm 1)$ which give us S and the identity respectively.
ii. The observations that ρ and $-\bar{\rho}$ are related by S and T give use two things. First

$$
\operatorname{Stab}(\bar{\rho})=S^{-1} \operatorname{Stab}(\rho) S
$$

and so we only need to compute the stabilizers of ρ. Second, it tells us that $T S \in \operatorname{Stab}(\rho)$. We can also see that this is an element of order three.
Suppose that $(a \rho+b) /(c \rho+d)=\rho$ Since $\operatorname{Im}\left(\frac{a z+b}{c z+d}\right)=\frac{x}{|c z+d|^{2}}$ we must have that $\frac{1 / 2}{|c z+d|^{2}}=$ $\sqrt{3} / 2$ which implies that $|c \rho+d|<1$
(Finish writing this down)
Another approach would be to look at the minimal polynomial of $\rho=e^{\pi i / 3}$, which is $z^{2}-z+1=0$. We know that this polynomial must divide the fixed point polynomial. This implies things like $(d-a) / c=-1$ and $b / c=1$. These give $c=b$ and $d-a=-b$ this means our matrix is of

Elliptic Functions

7. Show that

$$
\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right]
$$

is elliptic with period lattice Λ.
Solution (Knapp) It is easy to show that $\wp^{\prime}(z)$ is elliptic with period lattice Λ. Also observe that $\wp(z)=\wp(-z)$. Let $\Lambda=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$. This means $\wp^{\prime}\left(z+\omega_{1}\right)-\wp^{\prime}(z)=0$ which implies $\wp\left(z+\omega_{1}\right)-\wp(z)=C$ and evaluating at $z=\frac{-\omega_{1}}{2}$ shows that $C=0$. Similarly for ω_{2}.
8. For a lattice $\Lambda \subset \mathbf{C}$ and $m \geq 3$ define $G_{m}=G_{m}(\Lambda)=\sum_{\lambda \in \Lambda \backslash\{0\}} \lambda^{-m}$.
(a) Show that $\wp(z)-\frac{1}{z^{2}}=\sum_{k=1}^{\infty}(k+1) G_{k+2} z^{k}$. ${ }^{2}$
(b) Conclude that

$$
\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+g_{2} \wp(z)+g_{2}=O\left(z^{2}\right),
$$

as $z \rightarrow 0$, which shows that $\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+g_{2} \wp(z)+g_{2}$ is analytic at the origin of \mathbf{C}. Here $g_{2}=60 G_{4}$ and $g_{3}=140 G_{6}$.
(c) Conclude that $\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+g_{2} \wp(z)+g_{2}$ is constant. (Hint: use that elliptic functions without poles are constant.)
(d) Show the constant in the previous number is zero.

Solution (a) We have

$$
\frac{1}{(z-\lambda)^{2}}=\frac{1}{\lambda} \sum_{n=0}^{\infty} \frac{(n+1) z^{n}}{\lambda^{n+1}}=1 / \lambda^{2}+2 z / \lambda^{3}+3 z^{2} / \lambda^{4}+\cdots
$$

This shows that

$$
\begin{aligned}
\wp(z)-\frac{1}{z^{2}} & =\sum_{\lambda \in \Lambda^{*}} \sum_{n=1}^{\infty}(n+1) \frac{z^{n}}{\lambda^{n+2}} \\
& =\sum_{n=1}^{\infty}(n+1) z^{n} \sum_{\lambda \in \Lambda^{*}} \frac{1}{\lambda^{n+2}}
\end{aligned}
$$

where we used the footnote.

[^1](b) (Check using Sage or a long by-hand computation)
(c) $\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+g_{2} \wp(z)+g_{2}$ is an elliptic function without poles. Hence it is constant.
(d) Evaluating at say $\omega_{1} / 2$ shows that this constant must be zero.
9. The zeros of $\wp(z)-c$ are simple with precisely double zeros at the points congruent to $\omega_{1} / 2,\left(\omega_{1}+\right.$ $\left.\omega_{2}\right) / 2, \omega_{2} / 2$. (Hint: what are the zeros of $\wp^{\prime}(z)$ and what does this mean?)

Solution As usual, the double points are where the derivative vanishes.
Geometric Argument: if the $\wp^{\prime}(z)$ vanishes then by our equation we have $4 \wp(z)^{3}-g_{2} \wp(z)-g_{2}=0$. There are precisely the 2 -torsion points which under Weierstrass uniformization group isomorphism correspond to $\omega_{1} / 2,\left(\omega_{1}+\omega_{2}\right) / 2, \omega_{2} / 2$ in a fundamental domain of \mathbf{C} / Λ.

[^0]: ${ }^{1}$ A fundamental domain for an action $\Gamma \times X \rightarrow X$ is a closed subset $\Omega \subset X$ such that
 i. $X=\bigcup_{\gamma \in \Gamma} \gamma(\Omega)$
 ii. For all $\gamma \neq 1$ the set $\gamma(\Omega) \cap \Omega$ has empty interior.

 Note that this definition is different from what I had originally said in class. We had our fundamental domains have the property that $\gamma(\Omega) \cap \Omega=\emptyset$. Unfortunately, as this example shows, we can't always arrange for this.

[^1]: ${ }^{2}$ You may need to use that you can interchange some series. If $f_{n}(z)=\sum a_{j}^{(n)} z^{j}$ and $A_{j}=\sum_{n=0}^{\infty} a_{j}^{(n)}$ converges then $\sum_{n=0}^{\infty} f_{n}(z)=\sum_{j=0}^{\infty} A_{j} z^{j}$.

