Dupuy - Complex Analysis - Spring 2017 - Homework 05

Conformal Maps

1. Find the points where $w=f(z)$ is conformal if
(a) $w=\cos (z)$
(b) $w=z^{5}-5 z$
(c) $w=1 /\left(z^{2}+1\right)$
(d) $w=\sqrt{z^{2}+1}$.
2. Find a conformal map of the strip $0<\operatorname{Re} z<1$ onto the unit disc $|w|<1$ in such a way that $z=1 / 2$ goes to $w=0$ and $z=\infty$ goes to $w=1$.
3. Find the Möbius transformation that maps the left have plane $\{z \in \mathbf{C}: \operatorname{Re} z<1\}$ to the unit disc $\{w \in \mathbf{C}:|w|<1$ and has $z=0$ and $z=1$ as fixed points.
4. Find a conformal map from the following regions onto the unit disc $D=\{z:|z|<1\}$
(a) $A=\{z:|z|<2, \operatorname{Arg}(z) \in(0, \pi / 4)\}$
(b) $B=\{z: \operatorname{Re}(z)>2$
(c) $C=\{z:-1<\operatorname{Re}(z)<1\}$
(d) $D^{\prime}=\{z:|z|<1$ and $\operatorname{Re} z<0\}$
5. Let D be the unit disc. Let $f: D \rightarrow D$ be a conformal map.
(a) If $f(0)=0$ show that $f(z)=\omega z$ for some $\omega \in \partial D$.
(b) If $f(0) \neq 0$ show that there exists some $a \in D$ and $\omega \in \partial D$ such that

$$
f(z)=\omega \frac{z-a}{1-\bar{a} z} .
$$

6. (a) Show that $\mathrm{PSL}_{2}(\mathbf{Z})$ is generated by $S(z)=-1 / z$ and $T(z)=z+1$ and hence has the presentation

$$
\left\langle S, T: S^{2}=1,(S T)^{3}=1\right\rangle
$$

(b) Show that a fundamental domain ${ }^{1}$ for this action is the complement of the unit disc in a vertical strip of length 1 centered around zero in the upper half plane. In other words

$$
\Omega=\{z:|z| \geq 1 \text { and }-1 / 2 \leq \operatorname{Re}(z) \leq 1 / 2\}
$$

is a fundamental domain for this action.
(c) Show that the following points are fixed points of $\bar{\Omega}$ with the following stabilizers:
i. $\operatorname{Stab}(i)=\{1, S\}$
ii. $\operatorname{Stab}\left(e^{2 \pi i / 2}\right)=\left\{1, S T,(S T)^{2}\right\}$
iii. $\operatorname{Stab}\left(e^{\pi i / 3}\right)=\left\{1, T S,(T S)^{2}\right\}$
(Note: this exercise gives you an example of an action that is not free.)

[^0]
Elliptic Functions

7. Show that

$$
\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right]
$$

is elliptic with period lattice Λ.
8. For a lattice $\Lambda \subset \mathbf{C}$ and $m \geq 3$ define $G_{m}=G_{m}(\Lambda)=\sum_{\lambda \in \Lambda \backslash\{0\}} \lambda^{-m}$.
(a) Show that $\wp(z)-\frac{1}{z^{2}}=\sum_{k=1}^{\infty}(k+1) G_{k+2} z^{k}$. ${ }^{2}$
(b) Conclude that

$$
\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+g_{2} \wp(z)+g_{3}=O\left(z^{2}\right),
$$

as $z \rightarrow 0$, which shows that $\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+g_{2} \wp(z)+g_{3}$ is analytic at the origin of \mathbf{C}. Here $g_{2}=60 G_{4}$ and $g_{3}=140 G_{6}$.
(c) Conclude that $\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+g_{2} \wp(z)+g_{3}$ is constant. (Hint: use that elliptic functions without poles are constant.)
(d) Show the constant in the previous number is zero.
9. The zeros of $\wp(z)-c$ are simple with precisely double zeros at the points congruent to $\omega_{1} / 2,\left(\omega_{1}+\right.$ $\left.\omega_{2}\right) / 2, \omega_{2} / 2$. (Hint: what are the zeros of $\wp^{\prime}(z)$ and what does this mean?)

[^1]
[^0]: ${ }^{1}$ A fundamental domain for an action $\Gamma \times X \rightarrow X$ is a closed subset $\Omega \subset X$ such that i. $X=\bigcup_{\gamma \in \Gamma} \gamma(\Omega)$
 ii. For all $\gamma \neq 1$ the set $\gamma(\Omega) \cap \Omega$ has empty interior.

 Note that this definition is different from what I had originally said in class. We had our fundamental domains have the property that $\gamma(\Omega) \cap \Omega=\emptyset$. Unfortunately, as this example shows, we can't always arrange for this.

[^1]: ${ }^{2}$ You may need to use that you can interchange some series. If $f_{n}(z)=\sum a_{j}^{(n)} z^{j}$ and $A_{j}=\sum_{n=0}^{\infty} a_{j}^{(n)}$ converges then $\sum_{n=0}^{\infty} f_{n}(z)=\sum_{j=0}^{\infty} A_{j} z^{j}$.

