Rouche's Theorem and Argument Principal

1. (New Mexico, Jan 1997) How many roots does $p(z)=z^{4}+z+1$ have in the first quadrant?
2. (New Mexico, Aug 1993) How many roots does $e^{z}-4 z^{n}+1=0$ have inside the unit disc $|z|<1$?

Riemann Surfaces

3. (a) Show that every automorphism of \mathbf{C} extends to an automorphism of \mathbf{P}^{1}.
(b) Show that $\operatorname{Aut}(\mathbf{C}):=\left\{a z+b: a \in \mathbf{C}^{\times}\right.$and $\left.b \in \mathbf{C}\right\}$ (This sometimes called the one dimensional affine linear group and is denoted $\mathrm{AL}_{1}(\mathbf{C})$.).
4. Show that \mathbf{C} is not conformally equivalent to $D=\{z \in \mathbf{C}:|z|<1\}$.
5. Show that $\operatorname{Aut}(H)=\left\{\frac{a z+b}{c z+d}: a, b, c, d \in \mathbf{R}\right.$ and $\left.a d-b c=1\right\}$ (This is sometimes called the two dimensional projective special linear groups with coefficients in \mathbf{R}, and is denoted $\mathrm{PSL}_{2}(\mathbf{R})$).

Harmonic Functions

6. Let $f(z)=u(z)+i v(z)$ be analytic. Show that the level sets of $u(z)$ and $v(z)$ are orthogonal.
7. Let $u_{0}(\theta)$ be a continuous 2π-periodic function. Let D be a disc of radius r. The Dirichlet boundary value problem asks to find a function $u(x, y)$ such that:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad \text { for }(x, y) \in D \\
u\left(e^{i \theta}\right)=u_{0}(\theta),
\end{array}\right.
$$

Show that convolution with the Poisson kernel

$$
P_{r}(\theta)=\frac{1-r^{2}}{1-2 r \cos (\theta)+r^{2}}
$$

gives a solution to this problem.

