
Dupuy — Complex Analysis — Spring 2017 — Homework 07

1. Show the Gauss’ formula for the gamma function:

Γ(z) = lim
n→∞

nzn!

z(z + 1)(z + 2) · · · (z + n)
.

(Take the definition of the gamma function to be from its product formula).

Solution

nzn!

z(z + 1)(z + 2) · · · (z + n)
=

ez log(n)

1
n!

∏n
j=0(z + j)

=
ez log(n)e−

∑n
j=1 z/j∏n

j=0(1 + z
j )e−z/j

=
ez(log(n)−

∑n
j=1

1
j )∏n

j=0(1 + z
j )e−z/j

→ e−γz∏∞
j=0(1 + z

j )e−z/j
= Γ(z)

2. Show that
∫ 2π

0
log |1− eiθ|dθ = 0.

Solution We have |1− eiθ| = |e−iθ/2 − eiθ/2| = |2i sin(θ/2)| = 2| sin(θ/2)|.
Hence ∫ π

−π
log |2 sin(θ/2)|dθ = 2

∫ π

0

log |2 sin(θ/2)|dθ

= 4

∫ π/2

0

log |2 sin(φ)|dφ

= 2π log(2) + 4

∫ π/2

0

log | sin(φ)|dφ

Where we used φ = θ/2; 2dφ = dθ. The last integral is elementary and can be solved using the
substitution u = sin(φ): ∫ π/2

0

log | sin(φ)|dφ =

∫ 1

0

log(u)√
1− u2

du

= −π
2

log(2).

This gives the result. (I didn’t actually work this one out by hand, I used a Wolfram Alpha)

3. (New Mexico, Jan 2006) Consider f(z) =
∏∞
n=1(1− z/n3). What is the order of f(z)?

Solution For infinite products the convergence exponent is the order.

ρ = α = inf{β :
∑
n≥0

|an|−β converges }

= inf{β :
∑
n≥0

n−3β converges }

= 1/3
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4. Let f(z) =
∑∞
n=0 anz

n be an entire function of finite order ρ. Show that

ρ = lim sup
n→∞

log(n)

log |an|−1/n
.

Solution (Buterin Freiling Yurko)

• Suppose α > ρ. We have

|an| = | 1

2πi

∮
γR

f(z)

zn+1
dz|

≤ exp(rα)

rn
= exp(rα − n log(r)).

We have the freedom to choose r, and rα − n log(r) is minimized when rn = (n/α)1/α which
gives

rαn − n log(rn) =
n

α
− n

α
log

n

α
.

This implies

log |an| <
n

α
− n

α
log

n

α
,

which implies
1

n
log |an| <

1

α
(1− log(n) + log(α)),

which implies
1
n log |an|
log(n)

<
1

α
(−1 + o(1)).

Since α > ρ was arbitrary we get

lim sup
n→∞

log(n)

log |an|−1/n
< ρ.

• If |anj
|1/nj > n

1/α
j (I need work type this out. The solution is in the reference mentioned)

5. (a) Prove the Castorati-Weiestrass Theorem: Let f(z) is analytic in a punctured disc of radius R
at the origin. If f(z) has an essential singularity at z = 0 show that for every r with 0 < r < R
the set f(Dr(0) \ {0}) is dense in C. (This is a corollary of Big Picard).

(b) Let p be a polynomial. Show that there exists infinitely many zj such that p(zj) = ezj .

Solution (a) By the Big Picard Theorem f(Dr(0) \ {0}) = C \ {a} for some a ∈ C. This set is
dense. (This is a stupid proof. If you need this for a qualifying exam you should probably
learn another one.)

(b) The function f(z) = p(z) − ez is entire and has an essential singularity at infinity. Let
g(z) = f(1/z).

6. The following exercise is intended to introduce you to the j function which plays a role in the proof
of the Big Picard Theorem from class.

Let H be the upper-half plane. A modular function of weight 2k and level N = 1 is a function
f : H → C such that

f(
az + b

cz + d
) = (cz + d)2kf(z). (1)

for all

[
a b
c d

]
∈ SL2(Z).

(a) Let M2k denote the collection of modular forms of weight 2k and level 1. Show that M =⊕
k≥0M2k is a graded ring (i.e. that M2k1M2k2 ⊂M2k1+2k2).
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(b) Show that G2k(az+bcz+d ) = (cz + d)2kG2k(z) has weight 2k (Hint: check this on the generators
of SL2(Z).)

Using the first part conclude that the we have the following modular forms of the indicated
weights:

i. g2(τ) = 60G4(τ), k = 4

ii. g3(τ) = 140G6(τ), k = 6

iii. ∆(τ) = g2(τ)3 − 27g3(τ)2, k = 12

iv. j(τ) = 1728g2(τ)3/∆(τ), k = 0

Solution (a) Suppose that f(z) has weight k and g(z) has weight l and let h(z) = f(z)g(z). We
have

h(
az + b

cz + d
) = f(

az + b

cz + d
)g(

az + b

cz + d
)

= (cz + d)−kf(z)(cz + d)−lg(z)

= (cz + d)−(k+l)h(z).

It is also easy to see that M2k is a C-vector space.

(b) One needs to show that Gk is a modular form of weight k.

Gk(z) =
∑

(m,n)6=(0,0)

1

(mz + n)k
.

Observe that we may write the automorphy condition as

G(γ(z)) = j(γ, z)G(z)

where

j(

[
a b
c d

]
, z) = (cz + d)k.

is called the automorphy factor.

We wish to reduce the checking the automorphy condition on the generators. We claim that
reducting to this case amounts to checking the following condition on the function j (which
is sometimes called a “cocycle condition”:

j(γ1γ2, z) = j(γ1, γ2(z))j(γ2, z) (2)

This follows from the formal computation:

j(γ1γ2, z)G(z) = G(γ1(γ2(z)))

= j(γ1, γ2(z))G(γ2(z))

= j(γ1, γ2(z))j(γ2, z)G(γ2(z)).

We now check (2). If γ1 =

[
a b
c d

]
and γ2 =

[
A B
C D

]
one can check that

j(γ1, γ2(z)) = j(

[
a b
c d

]
,
Az +B

Cz +D
)

= (c
Az +B

Cz +D
+ d)k

=
1

(Cz +D)k
((Ac+ Cd)z +Bc+Dd)k

=
1

j(

[
A B
C D

]
, z)

j(

[
Aa+ Cb Ba+Db
Ac+ Cd Bc+Dd

]
, z)

=
1

j(γ2, z)
j(γ1γ2, z)
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which proves (2).1

It remains to check the automorphy condition on the generators. The generators are

T : z 7→ z + 1 ↔
[
1 0
0 1

]
, c = 0, d = 1

S : z 7→ −1/z ↔
[
0 −1
1 0

]
, c = 1, d = 0.

We now check the condition for S:

Gk(−1/z) =
∑

(m,n)6=(0,0)

1

(m
(−1
z

)
+ n)k

=
∑

(m,n)6=(0,0)

zk

(−m+ nz)k

= zkGk(z).

We now check the condition for T :

Gk(z + 1) =
∑

(m,n) 6=(0,0)

1

(m(z + 1) + n)k

=
∑

(m,n) 6=(0,0)

1

(mz + (m+ n))k

= Gk(z).

To conclude the last line it remains to check:

A = {(m,m+ n) : (m,n) ∈ Z2 \ {(0, 0)} = Z2 \ {(0, 0)}.

Note that A ⊂ Z2 \ {(0, 0)}— if (m,m+n) = (0, 0) then m = 0 which implies n = 0. We now
show that Z2 \ {(0, 0)} ⊂ A. To show (a, b) = (m,m+ n) we set m = a and n = a− b.
The Roman items follow directly from the graded ring property.

I just wanted you to look at these because they are important.

7. Explain in words the ideas that go into the proof of Montel’s Theorem in Green and Krantz (page
193). How is Arzela-Ascoli used?

Solution We let F the bounded family of functions from the statement of Montel’s Theorem.
After restricting to a particular subset we show that it is equicontinuous using Cauchy’s formula
for derivatives. We then apply Arzela-Ascoli to this equicontinuous family.

8. Let X = C× = C \ {0}. What is the universal cover of X? What is group of deck transformations
for this cover?

Solution The universal cover is exp : C → C× and the deck transformations are generated by
z 7→ 2πi+ z; G(C/C×) ∼= Z.

9. Use Van Kampen’s theorem to rigorously compute π1(P1 \ {p1, . . . , pr}, z0) for arbitrary r. (Hint:
apply Van Kampen to open sets U, V where U ∩ V is simply connected).

Solution I will omit notation for base points understanding that they are necessary for the com-
putation.

1The condition for (2) is a group cocycle for group cohomology.
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U

V

U ∩ V

Figure 1: The open subsets used to compute π1(D \ {p1, . . . , pr})

• Let’s first compute that π1(D \ {p1, . . . , pr}) since this is necessary for the computation.

We let U contain r − 1 punctures and V contain one punctures as in Figure 1. Since U ∩ V
simply connected we have

π1(D \ {p1, . . . , pr}) ∼= π1(D \ {p1, . . . , pr−1}) ∗ π1(D \ {pr})

Using this formula we get

π1(D \ {p1, p2}) ∼= π1(D \ {p2}) ∗ π1(D \ {p1}) ∼= Z ∗ Z = F2

π1(D \ {p1, p2, p3}) ∼= π1(D \ {p1, p2}) ∗ π1(D \ {p3}) ∼= Z ∗ Z ∗ Z = F3

...

π1(D \ {p1, p2, . . . , pr}) ∼= Z ∗ Z ∗ · · · ∗ Z︸ ︷︷ ︸
r-times

= Fr

• One can use the homotopy equivalence: P1 \ {p1, . . . , pr} ∼ D \ {p1, . . . , pr−1} which proves

π1(P1 \ {p1, . . . , pr}) ∼= Z ∗ Z ∗ · · · ∗ Z︸ ︷︷ ︸
(r − 1)-times

= Fr−1

• Alternatively, we could that π1(X) = π1(U) ∗π1(U∩V ) π1(V ) as in Figure 2. Here we have
U ∼= D \ {p1, . . . , pr−1} and V ∼= D \ {pr} and U ∩ V ∼= S1. We then have

〈β1, . . . , βr−1, α : β1 · · ·βr = γ1 = α〉 ∼= 〈β1, . . . , βr−1〉 ∼= Fr−1

10. Verify that F (z) =
∫∞
0
tz−1e−tdt and Γ(z) (via 1/Γ(z) being defined by the product formula)

satify the hypotheses of Weilandt’s Theorem. In particular that F (z) and Γ(z) are bounded when
1 < Re z < 2.

Solution The solution is worked out in McMullen. Also, it is worked out in Stein and Shakarchi.
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Figure 2: An open covering of P1 − (5 points).
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