Dupuy - Complex Analysis - Spring 2017 - Homework 07

1. Show the Gauss formula for the Gamma function:

$$
\Gamma(z)=\lim _{n \rightarrow \infty} \frac{n^{z} n!}{z(z+1)(z+2) \cdots(z+n)}
$$

(Take the definition of the Gamma function to be from its product formula).
2. Verify that $F(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$ and $\Gamma(z)$ (via $1 / \Gamma(z)$ being defined by the product formula) satify the hypotheses of Weilandt's Theorem. In particular that $F(z)$ and $\Gamma(z)$ are bounded when $1<\operatorname{Re} z<2$.
3. Show that $\int_{0}^{2 \pi} \log \left|1-e^{i \theta}\right| d \theta=0$.
4. (New Mexico, Jan 2006) Consider $f(z)=\prod_{n=1}^{\infty}\left(1-z / n^{3}\right)$. What is the order of $f(z)$?
5. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function of finite order ρ. Show that

$$
\rho=\liminf _{n \rightarrow \infty} \frac{\log (n)}{\log \left|a_{n}\right|^{-1 / n}}
$$

6. (a) Prove the Castorati-Weiestrass Theorem: Let $f(z)$ is analytic in a punctured disc of radius R at the origin. If $f(z)$ has an essential singularity at $z=0$ show that for every r with $0<r<R$ the set $f\left(D_{r}(0) \backslash\{0\}\right)$ is dense in \mathbf{C}. (This is a corollary of Big Picard).
(b) Let p be a polynomial. Show that there exists infinitely many z_{j} such that $p\left(z_{j}\right)=e^{z_{j}}$.
7. The following exercise is intended to introduce you to the j function which plays a role in the proof of the Big Picard Theorem from class.
Let H be the upper-half plane. A modular form of weight k and level $N=1$ is a function $f: H \rightarrow \mathbf{C}$ such that

$$
\begin{equation*}
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{-2 k} f(z) . \tag{1}
\end{equation*}
$$

for all $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbf{Z})$.
(a) Let M_{k} denote the collection of modular forms of weight k and level 1 . Show that $M=$ $\bigoplus_{k \geq 0} M_{k}$ is a graded ring (i.e. that $M_{k_{1}} M_{k_{2}} \subset M_{k_{1}+k_{2}}$.
(b) Show that $G_{2 k}\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2 k} G_{2 k}(z)$ has weight $2 k$ (Hint: check this on the generators of $\mathrm{SL}_{2}(\mathbf{Z})$.)
Using the first part conclude that the we have the following modular forms of the indicated weights:
i. $g_{2}(\tau)=60 G_{4}(\tau), k=4$
ii. $g_{3}(\tau)=140 G_{6}(\tau), k=6$
iii. $\Delta(\tau)=g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}, k=12$
iv. $j(\tau)=1728 g_{2}(\tau)^{3} / \Delta(\tau), k=0$
8. Explain in words the ideas that go into the proof of Montel's Theorem in Green and Krantz (page 193). How is Arzela-Ascoli used?
9. Let $X=\mathbf{C}^{\times}=\mathbf{C} \backslash\{0\}$. What is the universal cover of X ? What is group of deck transformations for this cover?
10. Use Van Kampen's theorem to rigorously compute $\pi_{1}\left(\mathbf{P}^{1} \backslash\left\{p_{1}, \ldots, p_{r}\right\}, z_{0}\right)$ for arbitrary r. (Hint: apply Van Kampen to open sets U, V where $U \cap V$ is simply connected).

