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It's hard to begin a math book. A few chapters in, it gets easier: by then, writer and 
reader have—or think they have—a common sense of the level of the book, its pace, 
language and goals; at that point, communication naturally flows more smoothly. 
But getting started is awkward. 

As a consequence, it's standard practice in math textbooks to include a throw-
away chapter or two at the beginning. These often have little or no content; rather, 
they're put there in the hope of establishing basic terminology and notation, and 
getting the reader used to the style of the book, before launching into the actual 
material. Unfortunately, the effect may be the opposite: a chapter full of seemingly 
obvious statements, expressed in vague language, can have the effect of making the 
reader generally uneasy without actually conveying any useful information. 

Well, far be it from us to deviate from standard practice! The following is our 
introductory chapter. But here's the deal: you can skip it if you find the material too 
easy. Really. Just go right ahead to Chapter 2 and start there. 

1.1 Counting Numbers 

This is a book about numbers. We hope to show you, during its course, something of 
the wild beauty of numbers: the intricate patterns of their behavior, and the way that 
even simple operations on them can give rise to questions that people have wrestled 
with for centuries. 

To start things off, we'd like to talk about counting, because that's how numbers 
first entered our world. It was four or five thousand years ago that people first 
developed the concept of numbers, probably in order to quantify their possessions 
and make transactions—my three pigs for your two cows and the like. And the 
remarkable thing that people discovered about numbers is that the same system of 
numbers—1, 2, 3, 4, and so on—could be used to count anything: beads, bushels 
of grain, people living in a village, forces in an opposing army. Numbers can count 
anything: numbers can even count numbers. 

And that's where we'll start. The first problem we're going to pose is simply: 
how many numbers are there between 1 and 10? 
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Now we know how many numbers are on the list: it's n  - (* - 1) or, more simply 
n ~k + 1. Our conclusion, then, is that 

The number of whole numbers between k  and n  inclusive is 

n  —  k  +  1 .  

^TS°jf!?Lo"ample' lf Someone asked "How manY numbers are there between 
111 and o \ We W0Uldn't have 10 thmk k thr0llgh from scratcb: the answer is b /6 — 342 + 1, or 235. 

Since this is our first formula, it may be time to bring up the whole issue of the 
role of formulas in math. As we said, the whole point of having a formula like this 
is that we shouldn't have to recreate the entire argument we used in the concrete 
examples above every time we want to solve a similar problem. On the other hand, 
it s also important to keep some understanding of the process, and not to treat the 
formula as a "black box" that spews out answers. Knowing how the formula was 
arrived at helps us to know both when it's applicable, and how it can be modified 
to deal with other situations. 

1.2 Counting Divisible Numbers 

Now that we've done that, let's try a slightly different problem: suppose we ask 
Flow many even numbers are there between 46 and 104?" 

In fact, we can approach this the same way: imagine that we did make a list of 
all even numbers, starting with 46 and ending with 104: 

46. 48. 50. 52, ...,102. 104 

Now, we've just learned how to count numbers in an unbroken sequence. And we 
can convert this list to just such a sequence if we just divide all the numbers on the 
list by 2: doing that, we get the sequence 

23, 24, 25. 26 51, 52 

of all whole numbers between 46/2, or 23, and 104/2, or 52. Now, we know by the 
formula we just worked out how many numbers there are on that list: there are 

52 - 23 + 1 = 30 

numbers between 23 and 52, so we conclude that there are 30 even numbers between 
46 and 104. 

One more example of this type: let's ask the question, "How many numbers 
between 50 and 218 are divisible by 3?" Once more we use the same approach: 
imagine that we made a list of all such numbers. But notice that 50 isn't the first 
such number, since 3 doesn't divide 50 evenly: in fact, the smallest number on our 
list that is divisible by 3 is 51 = 3 x 17. Likewise, the last number on our list is 218, 

Is it obvious that n  —  ( k  - I) is the same as n ~ k +  1? If not, take a moment out and convince 
yourself: subtracting k - 1 is the same as subtracting k and then adding 1 back. In this book we'll 
usually carry out operations like this without comment, but you should take the time to satisfy 
yourself that they make sense. 
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which isn't divisible by 3. The largest number on our list which is divisible by 3 i, 
216. which ,s (216 = 3 x 72). So the list of numbers divisible by 3 would look like 

51, 54, 57, 60, ...,213, 216, 

^ ^ MCh IUmber on this list br 

17, 18, 19. 20 71, 72 

of all whole numbers between 17 and 72, and there are 

7 2 — 1 7 + 1  = 5 6  
such numbers. 

Now it's time to stop reading for a moment and do some yourself: 

Exercise 1.2.1 

1. How many numbers between 33 and 97 are even? 

2. How many numbers between 17 and 783 are divisible by 6? 
3. How many numbers between 45 and 93 are odd? 
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one resting on the foundation of the ones that have come before. We'll occasionally 
go off on tangents and pursue ideas that won't be used in what follows, and we'll try 
to tell you when that occurs. But for the most part, you need to keep up: that is you 
need to work with the ideas and techniques in each section until you feel genuinely 
comfortable with them, before you go on to the next. 

It's worth remarking also that the cumulative nature of mathematics in some 
ways sets it apart from other fields of science. The theories of physics, chemistry, 
biology^and medicine we subscribe to today flatly contradict those held in the 17th' 
and 18l centuries—it's fair to say that the medical texts dealing with the proper 
application of leeches are of interest primarily to historians, and we'd bet your 
high school chemistry course didn't cover phlogiston.2 By contrast, the mathematics 
developed at that time is the cornerstone of what we're doing today. 

Really Big Numbers 

As long as we re talking about the origins of numbers, let's talk about another 
important early development: the capacity to write down really big numbers. Think 
about it: once you've developed the concept of numbers, the next step is to figure 
out a way to write them down. Of course, you can just make up an arbitrary new 
symbol for each new number, but this is inherently limited: you can't express large 
numbers without a cumbersome dictionary. 

One of the first treatises ever written on the subject of numbers and counting was 
by Archimedes, who lived in Syracuse (part of what was then the Greek empire) in 
the 3 century B.C. The paper, entitled The Sand Reckoner, was addressed to a local 
monarch, and in it Archimedes claimed that he had developed a system of numbers 
that would allow him to express as large a number as the number of grains of sand 
in the universe—a revolutionary idea at the time. 

What Archimedes had developed was similar to what we would call exponential 
notation. We'll try to illustrate this by expressing a really large number—say, the 
approximate number of seconds in the lifetime of the universe. (Don't laugh:' this 
number will actually come up in a practical context in the last part of this book.) 

The calculation is simple enough. There are 60 seconds in a minute, and 60 
minutes in an hour, so the number of seconds in an hour is 

60 x 60 = 3.600. 

There are in turn 24 hours in a day, so the number of seconds in a day is 

3,600 x 24 = 86.400; 

and since there are 365 days in a (nonleap) year, the number of seconds in a year is 

86,400 x 365 = 31,536,000. 

Now, in exponential notation, we would say this number is roughly 3 times 10 to 
the 7 power that is, a 3 with seven 0s after it. (A better approximation, of course. 

-In case you re curious, phlogiston was the hypothetical principle of fire, of which every com­
bustible substance was in part composed—at least until the whole theory was discredited by 
Antoine Lavoisier between 1770 and 1790. 
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would be to say the number is roughly 3.1 x 107, or 3.15 x 107; but we're goins to 
go with the simpler estimate 3 x 107.) & c 

Exponential notation is particularly convenient when it comes to multiplying 
large numbers. Suppose, for example, that we have to multiply I06 x 107. Well 10^ 
i s  j u s t  l O x  l O x  l O x  l O x  l O x  1 0 ,  a n d  1 0 7  i s  j u s t  l O x  l O x  l O x  l O x  l O x  l O x  1 0  
so when we multiply them we just get the product of 10 with itself 13 times: that is." 

106 x 107 = 1013. 

In other words, we simply add the exponents. So it's easy to take products of quan­
tities that you ve expressed in exponential notation. 

For example to take the next step in our problem, we have to say how old 
e universe is. Now, that very much depends on your model of the universe Most 

as rophysicists believe that the universe is approximately 13.7 billion years old with 
a possible error „„ the order of I *. We'll write the age of the universe, accordingly. 
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genius who shaped much of modern thought. "The foremost thinker of the Enlighten­
ment and one of the greatest philosophers of all time," the Encyclopedia Britannica 
calls him. But just read a sentence of his writing' 

If we wish to discern whether anything is beautiful or not, we do not refer 
the representation of it to the Object by means of understanding with a view 
to cognition, but by means of the imagination (acting perhaps in conjunction 
with understanding) we refer the representation to the Subject and its feeling 
of pleasure or displeasure. 

What s more, this is not a nugget unearthed from deep within one of Kant's books. 
It is, in fact, the first sentence of the first Part of the first Moment of the first Book 
of the first Section of Part I of Kant's The Critique of Judgement. 

Now. we're not trying to be anti-intellectual here! or to take cheap shots at other 
disciplines. Just the opposite, in fact: what we're trying to say is that any body of 
thought, once it progresses past the level of bumper sticker catch phrases, requires 
a language and a set of conventions of its own. These provide the precision and 
universality that are essential if people are to communicate and develop the ideas 
further, and shape them into a coherent whole. But they also can have the unfortunate 
effect of making much of the material inaccessible to a casual reader. Mathematics 
suffers from this—as do most serious academic disciplines. 

The point, in other words, is not that the passage from Kant we just quoted is 
babble, it s not. (Lord knows we could have dug up enough specimens of academic 
writing that are, if that was our intention.) In fact, it's the beginning of a serious 
and extremely influential attempt to establish a philosophical theory of aesthetics. 
As such, it may be difficult to understand without some mental effort. It's important 
to bear in mind that the apparent obscurity of the language is a reflection of this 
difficulty, not necessarily the cause of it. 

So, the next time you're reading this book and you encounter a term that turns 
out to have been defined—contrary to its apparent meaning—some 30 pages earlier, 
or a formula that seems to come out of nowhere and that you're apparently expected 
to find self-explanatory, just remember: it could be worse. 


