r‘\

Chapter

20

The
Subtraction
Principle

There are 26 ]etler§ in the English alphabet, divided into vowels and consonants. For
the purposes of this discussion, we’ll say the letters

AE, I,Oand U
are vowels. and the letters

B.C.D,F,G,H J,K,L,M, N, P, QR ST, V,W X, Y and 7.

are consonants. Now, quickly: how many
How many of you counted out the let
ably not many: it’s just a lot easier to ¢

consonants are there?
ters in the sequence B, C, D, F,...7 Prob-
ount the vowels, and subtract the number

tters to arrive at th
L yoe from totl € answer that there are

And that’s all there is to the subtr
basic counting tools we'll be using,

deep—it amounts to nothing more t
box anyway:

action pringiple, which is the second of the
after the multiplication principle. It’s not at all
han an observation, really—but we’ll give it a

The number of objects in a collection that

obje satisfy s ition i
total number of objects in the collection The - condition is equal fo the

minus the number of those that don’t.

The point being, it's asi
e o bei i;.; Ownf)tf)ten casier to count the latter than the former. It hardly
gives us a number of different w
fact. as we'll see in this chapter
problems we can solve,

We start with a few simple examples

3.1 Back to the Video Store

Once more, you
one lighthearted
game. The House of Videos
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action movies (five of which feature car chases), five lighthearted romantic come-
dies (two of which feature car chases) and 23 movies based on cartoons or video
games (eight of which feature car chases). But there’s one restriction: some of your
roommates have informed you that if you return with three movies featuring car
chases they’re officially kicking you out of the room. Now how many triple bills are
possible?

Well, we could try to do this with the multiplication principle, as we did before
the anti-car chase faction in your room raised its voice. But it's easy to see this
isn’t going to work. We can pick the action movie freely, of course; we have seven
choices there. And we can pick the lighthearted romantic comedy freely as well;
that’s a free choice among five movies. But when it comes time to pick the last
movie, how many choices we have depends on what our choices up to that point
have been: if either of the first two movies is without car chases, we can choose the
third movie freely among the 23 movies based on cartoons or video games; but if
both of our first two choices do feature car chases. the choice of the third movie is
limited to those 15 that don’t. Changing the order of selection doesn’t help, either:
any way we work it, the number of choices available to us for the last movie depends
on our first two selections.

So what do we do? It’s simple enough. We already know how many total choices
we’'d have if there were no restrictions: as we worked it out, it’s just

7% 5 x 23 = 805.

At the same time, it’s easy enough to count the number of triple bills that are excluded
if we want to stay in the room: we can choose any of the five action movies featuring
car chases, either of the two lighthearted romantic comedies featuring car chases,
and any of the eight movies based on cartoons or video games featuring car chases,
for a total of

5x2x8=280
disallowed triple features. The number of allowable choices is thus
805 — 80 = 725.

Here’s a similar problem (some might say the same problem). We've already
counted the number of four-letter words, by which we mean arbitrary sequences of
four of the 26 characters in the English alphabet. Suppose we ask now, how many
such words have at least one vowel? (Here we’ll stick to the convention that *Y”
isn’t a vowel.)

As in the last problem, the multiplication principle seems to work fine until we
get to the last letter, and then it breaks down. We have 26 choices for the first letter,
26 for the second and 26 for the third. But when it comes to choosing the last letter,
we don’t know how many choices we’ll have: if any of the preceding three choices
happened to be a vowel, we are now free to choose any letter for the last one in our
word; but if none of the first three was a vowel we can only choose among the five

vowels for the last.
Instead, we use the subtraction principle: we know how many words there are

altogether, and we’ll subtract from that the number of words consisting entirely of

consonants. Both are easy: the number of all possible words is just 26%, and the
number of four-letter words consisting only of consonants is 21%, so the answer to
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our problem is

26* — 214 = 456.976 — 194,481 — 262,495,

. One more example: in the first section, we saw how to answer questions like,
OW many numbers are there between 34 ang 787

and “"How many bers
between 34 and 78 are divisible by 57 Well. suppose oy number

now someone asks. “How

Moreover, since the first and last numbers between 34 and 78 that are divisible by

5are35=7><53nd75—-15x5 the numb
. = , er of numbers in thic ivisi
5 is the number of numberg between 7 and 15; that 1s o this range divisible by

s

I5-74+1=9

So by the subtraction principle, the

b
not divisible by 5 is 45 — 9, oy 3¢, aumber of numbers berween 34 and 78 that are

3.2 Some More Problems

With the subtraction principle, we’ve doubled the number

to cqunting problems. One downside to having more tha
that it’s no longer unambiguous h i
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there are 15! ways there are of ordering the class ; e IPle here: we know

f we 08
‘, N e TSN .
we can figure out how many ways there are of lining thgm uno estrictions; so if

Jason are next to each other, we ¢an subtract that from the t()t[; oo that Bobby and
that way. dand get the answer
So, how do we figure out the number of lineups with Bobby ang ]
It seems. we haven't exactly solved the problem yet: the next th; ason adjacent?
the multiplication principle isn't going to work here. at least not a4 e >¢¢ is that
Example 2.4.1. we can certainly choose any of the 15 students tq (\)Ve 3Pplied it i
place in line. but then the number of chojces for the second place ir?m-lpy the first
on whether the first choice was Bobby or Jason. or one of the other 13 ﬁi(f depends

more.'this ambiguity persists at every stage thereafter: whom we can ui‘ ‘What’s
place in line depends on who W€ put in the preceding spot. Put in €ach
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But there are other ways of applying the multiplication principle in this setting.
In the solution we gave to Example 2.4.1, we made our choices one place at a time—

assigned each a place in line. For example. we could start with Bobby, and assign
him any of the 15 places in line; then €0 on to Jason and assign him any of the
remaining 14 places in line. and so on through all 15 kids.

As long as we're dealing with the version of the problem given in Example 2.4.1,
it doesn’t matter which approach we take; both lead us to the answer 15-14.13 ... 3.
2.1 =15". But in the current situation—where we're trying to count the number of
lineups with Bobby and Jason adjacent, say—it does make a difference.

respectively: but if Bobby was placed in any of the interior slots, then we can choose
to place Jason either immediately ahead of him or immediately behind him. So it
seems that the multiplication principle doesn’t work this way, either.

But there is a difference. Approaching the problem this way—taking the students
one at a time, and assigning each in turn one of the remaining places in line—we
see that once we've got Bobby and Jason assigned their places, the multiplication
principle takes over: there are 13 choices for where to place the next kid, 12 choices
of where to place the one after that, and so on. In other words, if we break the
problem up into first assigning Bobby and Jason their places, and then assigning the
remaining 13 kids theirs, we see that

the number of lineups the number of ways of
of the class with Bobby ¢ = { assigning Bobby and Jason } x 13!
and Jason adjacent adjacent places in line

It remains to count the number of ways of assigning Bobby and Jason adjacent
Places in line. This is not hard: as we saw above, there are two ways of doing this
with Bobby occupying an end position, and 13 x 2 = 26 ways of doing it with
Bobby occupying an interior position (second through fourteenth), for a total of 28
ways. Or we could count this way: to specify adjacent places in line for Bobby
and Jason, we could first specify the pair of positions they’re to occupy—first and
second, or second and third, and so on up to fourteenth and fifteenth—and then say
which of the pair Bobby’s to occupy. For the first, there are 14 choices, and for the
latter 2 choices, so by the multiplication principle we see again there are 28 ways
of assigning Bobby and Jason adjacent places in line.

In conclusion, we see that

the number of lineups
of the class with Bobby § = 28 x 13!

and Jason adjacent
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and correspondingly,

the number of lineups
of the class with Bobby } = 15! — (28 x 13))
and Jason apart

1,133.317,785.600. ]

Exercise 3.2.2 Do Example 3.2.1 over, using the approach followed above but
without the subtraction principle: that is, count the number of lineups of the class
with Bobby and Jason apart by counting the number of ways you can assign Bobby
and Jason to two nonadjacent places in line, and the number of ways you can assign
the remaining 13 students to the remaining 13 places. Does your answer agree with
the one above?

Before we go on, we want to emphasize one point that is illustrated by
Example 3.2.1 and its solution. It’s an important aspect of learning and doing math-
ematics, and the failure to appreciate it is the cause of a lot of the frustration that
everyone experiences in reading math books. Simply put, it’s this: formulas don’t
work. At least. they don’t usually work in the sense that you can just plug in appro-
priate numbers, turn the crank and arrive at an answer. It’s better to think of tormulas
as guides. suggesting effective ways of thinking about problems.

That’s probably not what you wanted to hear. When it's late at night and your
math homework is the only thing standing between you and bed, you don’t want to
embark on a glorious journey of exploration and discovery. You just want someone
to tell you what to do to get the answer, and formulas may appear to do exactly that.

But. really, that’s not what they’re there for, and appreciating that fact will spare
you a lot of aggravation.
Now you try it.

Exercise 3.2.3 A new-style Massachusetts lic

can be any letter from A to Z) followed b
from 0 to 9).

ense plate has two letters (which
y four numbers (which can be any digits

1. How many new-style Massachusetts license plates are there?
2. How many new-style Massachusetts license
repeated letters and no repeated numbers?

3. How many new-style Massachusetts lice
one 77

plates are there if we require no
nse plates are there that have at least

Exercise 3.2.4 Let's assume that a

; phone number ioits .
start with 2 0. has seven digits, and cannot

1. How many possible phone numbers are there?

2. How many phone numbers are there with at least one even digit?
git?

Exercise 3.2.5 Getting

dressed: suppose i shi ; C hye
and three pairs of shoes, o you own eight shirts, five pairs of pants
1. Assuming you have no fashion

sense whatsoever - ,
make? . how many outfits can you
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2. Suppose now that one shirt is purple, one pair of pants is red, and you can make
any combination except ones including the red pants and the purple shirt. How
many outfits can you make?

3. Now suppose that any time you wear the purple shirt you musr also wear the
red pants. How many outfits can you make?

The following problem is hard, but doesn’t use any ideas that we haven't
introduced.

Exercise 3.2.6 Let’s go back to the problem of lining up our class of 15 students.
Suppose that Bobby and Jason are so wired that for the sake of everyone’s sanity we
feel there should be at least two other kids between them. Now how many possible
lineups are there?

3.3 Multiple Subtractions

Even as simple an idea as the subtraction principle sometimes has complications. In
this section, we’ll discuss some of what can happen when we have to exclude more
than one class of object from a pool. As with the subtraction principle itself, the
basic concept is more common sense than arithmetic, and to emphasize that point
we’ll start with an edible example.

Consider the following list of 17 vegetables:

artichokes

asparagus

beets

broccoli

cabbages

carrots

cauliflower

celery

corn

eggplant

lettuce

onions

peas

peppers

potatoes

spinach

zucchini

Of these, four—beets, carrots, onions and potatoes—are root vegetables. Two—
corn and potatoes—are starchy. Now we ask the question: how many are neither
root vegetables nor starchy?
Well, the obvious thing to do would be to subtract the number of root vegetables

and starchy vegetables from the total, getting the answer

17—-4-2=11.
But a moment’s thought (or, for that matter. actual counting) shows you that isn’t

right: because a potato is both a root vegetable and a starchy one, you've subtracted
it twice. The correct answer is accordingly 12.
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And that’s the point of this section. It amounts to the observation that when you
want to exclude two classes of objects from a pool and count the number left. you can
start with the total number of objects in the pool and subtract the number of objects
in cach of the two excluded categories; but then vou have to add back in the number
of objects that belong to both classes and have therefore been subtracted nvice.

Here’s a more mathematical example:

m How many numbers between 100 and 1,000 are divisible by neither
2 nor 37

SOLUTION  We know that the number of numbers between 100 and 1.000 is simply
1,000 — 100 + 1 = 901.

Likewise, we can count the numbers in this range divisible by 2: these are just the
even numbers between 100 and 1,000, or in other words twice the numbers between
50 and 500; so there are

500 — 504 1 =451

of them. Similarly. the numbers divisible by 3 are Just 3 times the numbers between
34 and 333; so there are

333 -34+1=300

of those. So, naively. we want to subtract each of 451 and 300 from the total 901.

But. as you've probably figured out—we’ve stepped all over this punchline—
that would be wrong. Because there are numbers divisible by both 2 and 3. and
these will have been subtracted twice: to rectify the count we have to add them back
in once.

Now. what numbers are divisible by both 2 and 3? The answer is that a number
divisible by 2 and by 3 is necessarily divisible by 6, and vice versa.! So the numbers
between 100 and 1,000 that are divisible by both 2 and 3 are just the numbers in

that range divisible by 6, which is to say 6 times the numbers between 17 and 167.
There are thus

167 —-17+1 =151

of them. and so the correct answer to our problem will be

901 — 451 — 300 + 151 = 301. n

Here's one more involved exam
convention that by a “word” we m
alphabet.

EIETEER]  How many fou
three or more times in a row?

SOLUTION  This clearly calls for the subtraction principle. We know how many
four-letter words there are in all—the number is

Ple of the same idea. Again, we’re keeping the
ean an arbitrary sequence of letters of the English

r-letter words are there in which no letter appears

260 X 26 x 26 x 26 = 456,976.

————
Vs this clear? Think about it, but if

. you don’t see why this i
now. and in Chapter 8 we'll work Fae

; the case, relax; take our word for it
1t out.
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We just have to subtract the number of words in which a letter appears three or more
times in a row.

Now, there are two kinds of four-letter words in which a letter appears three
times in a row: those in which the first three letters are the same. and those where
the last three letters are the same. In each case, the number of such words is easy to
count by the multiplication principle. For example. to specify a word in which the
first three letters are the same. we have to specify that letter (26 choices) and the
last letter (26 choices again), so there are

26 x 26 = 676

of this type. By the same token. there are 676 four-letter words in which the last
three letters are the same; so naively we want to exclude 2 x 676 = [.352 words.
But once more that’s not quite right: the 26 words in which all four letters are
the same belong to both classes, and so have been subtracted twice! So to correct
the count, we have to add them back in three times. The correct answer is therefore

456,976 — 1,352 4+ 26 = 455,650. u

Actually, there’s another way to do this, morally the same but avoiding the issue
of multiple subtractions. We can count the number of words in which one letter
appears exactly three times in a row, and the number of words in which one letter
appears four times, add them up and subtract the total from the number of all four-
letter words. For the first, there are again two classes of such words; but within each
class the number is different: we choose the repeated letter among the 26 letters
of the alphabet as before, but since that letter is to appear exactly three times the
remaining letter must be chosen among the remaining 25 letters of the alphabet.
There are thus a total of

2 %26 x25=1.300

such words. There are again 26 words in which one letter appears all four times: so
the correct answer is

456,976 — 1,300 — 26 = 455,650

as before.
This last exercise represents another level of complexity in the subtraction prin-
ciple, but you should be able to do it if you keep your wits about you.

Exercise 3.3.3 How many five-letter words are there in which no letter appears
3 or more times in a row?




