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In this chapter we re going to introduce a new, fundamental idea in counting. This 
will also be the last new formula: using this and the ideas we've already introduced 
in combination, we 11 be able to count all the objects we want, at least until the final 
(and optional) chapter of this part of the book. 

There s nothing mysterious about it. Basically, in the last couple of chapters 
we ve considered a range of problems in which we count the number of ways to 
make a sequence of choices. In each instance, either the choices were made from 
dillerent collections of objects (shirts and pants; meat and vegetable toppings on 
our pizza; action thrillers and light romantic comedies) or, if they were selections 
made Irom the same collection of objects, the order mattered: when we're counting 
lour-letter words, "POOL" is not the same as "POLO." 

What we want to look at now are situations where we choose a collection of 
objects horn the same pool, and the order doesn't matter. We'll start by revisiting 
some of the problems we've dealt with, and show how slight variations will put us 
in this kind of situation. 

1 Back to the House of Pizza 

Li n T "A Tf y°" head °ver t0 the House of pl"» for lunch Today, 
on.fltZn h 'a8 "I87 a"d " P^a with three meat toppings 
Z d fe n', n?8 ? 'he H°P " m offing seven meat toppings, how many different pizzas will fit the bill? 

and VOllr r00mmates have once more selected yon to go forth 
o ie basedTg ' enlem"™* this nigh, everyone's in the mood for a festival 
lr of 1 yTti'0"1'' ST T V'de° 8ameS' Md f°ur m'ssion is to re.nm with 
ho c" d0 hltT"eS 'he House <* Video, carries. How many dtfferen, cnoices do you have at the video store? 

officei"alwe'mt,s',0fUr 'T ? 'S ,ime- W-* going to select :::«,o t • commi"ee °f f°ur «» irs;*have ,o seiect 
formed'7 many different committees can be 
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You get the idea? In each case we're choosing a collection of a specified number 
of objects from a common pool (toppings, videos, students), and the order doesn't 
matter: ordering a pizza with sausage, pepperoni and hamburger gets you pretty much 
the same pizza as ordering one with hamburger, pepperoni and sausage. This sort 
of situation comes up constantly: when you're dealt a hand of five cards in draw 
poker, or of 13 cards in bridge, it doesn't matter in what order you receive the cards; 
possible hands consist of collections of five or 13 cards out of the deck of 52. By 
way of language, in this sort of situation—where we make a series of selections 
from a common pool, but all that matters is the totality of objects selected, not the 
order in which they're selected—we'll refer to choosing a collection of objects. In 
settings where the selections are made from different pools, or where the order does 
matter, we'll refer to choosing a sequence. 

Now, as you'll recognize, all of the problems above are really the same problem 
with different numbers substituted. In fact, there are only two numbers involved: 
in each of these cases, the number of possible choices depends really only on the 
number of objects in the pool we're selecting from; and the number of objects to be 
selected to form our collection. 

What we need to do. then, is to find a formula for the number of such collections. 
We'll do that in the following section, and then we'll see how to combine that formula 
with the others we've derived to solve a large range of counting problems. 

4.2 Binomial Coefficients 

The good news: the formula for the number of collections is very simple to write 
down and to remember. The bad: it's not quite as straightforward to derive as the 
ones we've done up to now; in fact, figuring it out requires a somewhat indirect 
argument. What we'll do is show how to find the answer in a particular case, and 
once we've done that it'll be pretty clear how to replace the particular numbers in 
that example with arbitrary ones. 

Let's take the case of choosing a committee of four students from among a class 
of 15—that is, the problem of counting the number of possible committees that can 
be formed. Again, this is a situation where the order of selection doesn't matter: egos 
aside, choosing Dave and then Rebecca has the same outcome as choosing Rebecca 
and then Dave; all that matters in the end is who is on the committee and who is 
not. And since possible committees don't correspond to sequences of choices, the 
multiplication principle doesn't seem to apply. 

But it does apply!—in a sort of weird, backhanded way. To see how, let's focus 
for a moment on a different problem, the class officer problem: that is, counting the 
number of ways we can choose a president, vice president, secretary and treasurer 
for the class, assuming no student can occupy more than one office. As we saw, 
the multiplication principle works just fine here: we choose a president (15 choices), 
then the vice president (14), then the secretary (13) and finally the treasurer (12), for 
total of 

15! 
1 5 - 1 4 - 1 3 - 1 2  o r  —  

possible slates. 
But now suppose we want to solve the same problem in a different, somewhat 

warped way (though again using the multiplication principle). Suppose that instead 
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of choosing the slate one officer at a time, we break the process up into two steps: 
first we choose a committee of four students who will be the class officers, and then 
choose which of those four will be president, vice president, secretary and treasurer. 

That may seem like an unnecessarily complicated way to proceed. After all, 
we already know the answer to the class officer problem, while we don't know the 
number of committees. Bear with us! Let's look anyway at what it tells us. 

The one thing we do know is, having selected the four members of the committee, 
how many ways there are of assigning to the four of them the jobs of president, vice 
president, secretary and treasurer: by what we already know, this is just 4 • 3 • 2 • 1 = 
4! = 24. So if we do break up the process of selecting class officers into two stages, 
choosing a committee and then assigning them the four jobs, what the multiplication 
principle tells us is that 

the number of ways of 1 _ j the number of ways of 1 
choosing a committee j ' — j selecting class officers j ' 

Now that, if you think about it a moment, tells us something. Since we know 
that the number of ways of selecting class officers is 15!/11!, we can solve this 
equation for the number of committees: 

the number of ways of 1 _ J_ j the number of ways of 1 
choosing a committee J ~~ 41 ' j selecting class officers } 

15! 
~ 4!11! 

In English: since every choice of committee corresponds to 4! = 24 different possible 
choices of class officers, the number of possible committees is simply (l/24)th the 
number of slates. 

You can probably see from this that it's going to be the same when we count 
the number of ways of choosing a collection of any number k of objects from a pool 
of any number n. We know that the number of ways of choosing a sequence of k 
objects without repetition—a first, then a second different from the first then a third 
different from the first two and so on—is just 

n • in - 1) (n - k + 1) = —— . 
( n  —  k ) l  

At the same time, for each possible collection of k objects from the pool, there are 

k - ( k - l )  2 • 1 = k \  

ways of putting them in order-choosing a first, a second, and so on. The conclusion, 
then, is that 

the number of ways of choosing 
a collection of k objects, without 
repetition, from a pool of n objects 

j the number of ways of choosing a 
~ ~k~l ' secluence of k objects, without 

repetition, from a pool of n objects 

_ ,J-
k\(n - k)!' 

or, in other words, 
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The number of ways of choosing a collection of k objects, without repetition, 
from among ;; objects is 

n\ 
k \ ( n  - k ) l '  

So, for example, if the House of Pizza offers seven meat toppings, the number 
of possible pizzas you can order with three meat toppings is 

7! 5,040 = = 35; 
3!4! 6-24 

and if you're sent to the video store with instructions to return with an assortment of 
exactly four of their 23 movies based on comic strips or video games, your choice 
is among 

23! 
= 8,855 

4! 19! 

such assortments. 
The numbers that appear in this setting are so ubiquitous in math that they have 

a name and a notation of their own. They're called binomial coefficients (for reasons 
we'll explain in Chapter 6), and written in this way: 

n ! 

k \ ( n  —  k ) \  

There are a number of things we can say right off the bat about binomial 
coefficients. To begin with, there is the basic observation that 

"j = ( " 
k )  \ n  -  k  

This is obvious from the above formula: we see that 

n\ n\ 

k l ( n  —  k ) \  ( n  —  k ) l k l  

just by rearranging the factors k \  and ( n  -  k ) l  in the denominator. It's also clear 
from the interpretation of these numbers: after all, specifying which four kids in the 
class of 15 are to be put on the committee is tantamount to specifying which 11 to 
leave off it; and in general choosing which k objects to take from a pool of n is the 
same as choosing which n — k not to take. 

Second, as we've pointed out, the standard formula for the binomial coefficients 

k l ( n  —  k ) \  

n • (11 — 1) • (n — 2 )  •  •  •  2  •  1  

k  •  ( k  -  D - - - 2 -  1  •  ( 1 1  - k )  •  ( n  - k  -  1 )  
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is in some ways not the most efficient way to represent the number—it's certainly 
not how you would calculate it in practice—since there are factors that appear in 
both the numerator and the denominator, and can be cancelled. Doing this gives us 
two alternative ways of writing the binomial coefficient: 

/ n \  _  n  •  ( n  -  1 )  •  •  •  ( n  -  k  + 1)  

W  ~  k - ( k -  D - . - 2 -  1  

n  •  ( n  -  1 )  •  •  •  ( k  +  1 )  
( n  -  k )  •  ( n  —  k  - 1) • • • 2 • 1' 

This is not just an aesthetic issue, it's a practical one as well. Suppose for 
example, you wanted to count the number of possible five-card hands from a standard 
deck of 52—that is, you wanted to evaluate the binomial coefficient (5-2)— and you 
wanted to carry out the calculation on your calculator. If you write the binomial 
coefficient as 

/52\ _ 52 - 51 -50 -49 -48 
\ 5 / 5 • 4 • 3 • 2 • 1 

your calculators have no trouble multiplying and dividing out the factors. But if 
you write 

(52\_ 52! 

V5 ) ~ 5!47! 

you're in trouble: when you punch in 52! in your calculator you'll probably -et an 
u,o, message; most calculators can't handle numbers that large. Or, even worse you 

In effect the cTul'aT^lT y0U;.caIculator Wl11 simPly switch to scientific notation. 
and - tel1 ™ a"d — —-

begin ^hh, * """ ̂  ̂  °f *»"« efficients. To 

corresponding to the statement that '-there are » wave t u • 
amon» n  " (Well tint'*; 0 y choosing one object from 
see lhai ' ' ' M "«"•> Al»- b>" «r convention ,hat 0! = 1. we 

(n\ _ "! 

\0/ 0!n! 

" m a k e s  , h e  

Iron, nnton'g „':n,ereS"n!! CaSe " 'he numl"' of choosing n pair of objects 

 ̂ ^ ~ 1} 
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so that the number of ways of choosing two objects from among three is 3 • 2/2 = 3 
(remember, this is the same as the number of ways of picking one object); the number 
of ways of choosing two objects from among four is 4 • 3/2 = 6; and in general we 
can make a table 

n # of ways of choosing two 
objects from among n 

3 3 
4 6 
5 10 
6 15 
7 21 
8 28 

and so on. We can make a similar table for the binomial coefficients ("): 

n # of ways of choosing three 
objects from among n 

4 4 
5 10 
6 20 
7 35 
8 56 
9 84 

Mathematicians have found many fascinating patterns in these numbers, as well 
as other interpretations of them. We'll take a look at a few of these in Chapter 6. 

There's one final remark we want to make about the binomial coefficients, even 
though it may be of interest only to math nerds. From the formula 

/  n \  n !  
V * /  ~  k l ( n  -  k ) l  

it's clear that (J,') is a fraction, but it's far from clear that it's actually a whole number. 
Of course, we know it's a whole number from the interpretation as the number of 
w a y s  o f  c h o o s i n g  k  o b j e c t s  f r o m  n ,  b u t  t h a t  j u s t  r a i s e s  t h e  q u e s t i o n :  c a n  w e  s e e  w h y  
the formula above always yields a whole number? In some cases we can do this. 
For example, when we look at the formula 

G)=^ 
and ask, "why is this a whole number?" we have an answer: no matter what n  is. 
either n or n - 1 must be even. Thus the product n(n - 1)—the numerator of our 
fraction—must be even, and so the quotient is a whole number. Likewise, consider 
the formula 

/ » \  _  n ( n  - l)(/z - 2) 

W ~ 6 ' 
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Of the three factors n „ - 1 and « - 2 that appear tn the numerator, at least one 

Z - w  K V ' i  u a n d  a t  l e a s t  0 n e  m u s t  b e  e v e n -  T h e  n u m e r a t o r  m u s t  t h u s  b e  
.S' y ^a§ain' think about it; if it's not clear now it will be in Chapter 8) 

and so the quotient is whole. ^uapiei o;, 

But it gets less and less obvious as k increases. For example, when we say that 

/n\ „(„ _ i)(„ _2)(„ _3) 

W 24 "• 

\ ""S f°r • moraeM: «»*• yw> convince 
someone else? S1"g "* ln,af®lion of (J)? Could you convmee 

i. ""S 'S fOT - W'" JU" ,MVe 

Now it's time for you to do some exercises. 

toppings. How man7SferentWpkzlthca menU H°USe °f PiZZa HstS eight meat 

toppings? How many with three? " y°U ^ ther6 W'tb tWO (different) meat 

to do exactly seve^of'them5'In ho^m6" W'th 10 problems- and are asked 
them. In how many ways can you choose which seven to do'? 

Examples 

We can combine the formula we have f .u 
formulas and techniques. Here are snmp °r 6 num^er op collections with other 

mmiMMM c S°meeXampleS'inthe form of solved problems. 
Suppose once more i j 

students from our class of 15 to form a ^ 6 -t0 cboose a collection of four 
restriction: we don't want the committee tn COmmitte^> but this time we have a 
that there are eight boys and seven girls fort? ^ °r aH girls" (Reca11 

committees can we form? class.) How many different 

number of pos^ble^mmhteest' ^ SUbtraCtion princiPle. We know that the total 

/!5\ 15 • 14 • 13 • 12 
V 4 / = 1.365. 

The number of committees consisting of all boys is similarly 

8 - 7 . 6 . 5  
. w 4T3T2~T~70' 

number of committees consisting of all girls is 

F t  7  6 - 5 - 4  
If V v 4 • 3 • 2 • 1 ~ 
B we exclude those, we see that th» 

15\ /8\ /7\nUm ^ °f all°Wable commi"ees is 

4/ \4/ (4J ~ ]'365 ~ 70 - 35 = 1,260. • 
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Note that even though this is a multiple subtraction, we don't need to add any 
terms back in, since there are no committees that belong to both excluded classes— 
that is, a committee can't simultaneously consist of all boys and all girls. 

EXAMPLE 4.3.2 One more committee: now suppose we require that the committee 
includes exactly two boys and two girls. How many possibilities are there now? 

SOLUTION This, by contrast, is a case for the multiplication principle: to choose 
an allowable committee subject to this restriction, we simply have to choose two 
among the eight boys, and (independently) two among the seven girls. The answer 
is thus 

) - ( 7 1  =  2 8 - 2 1 =  5 8 8  •  

Exercise 4.3.3 Back to the House of Pizza: given that they feature seven meat 
toppings and four vegetable toppings, how many pizzas can be ordered with two 
meat and two vegetable toppings? 

Exercise 4.3.4 Sam's ice cream shop offers only vanilla ice cream, but has 17 
different possible toppings to choose from. 

1. How many different sundaes can be formed with exactly three toppings? 

2. How many different sundaes are there with at least two toppings? 

3. How many different sundaes can be formed with no restriction on the number of 
toppings? 

EXAMPLE 4.3.5 There are 10 players on a basketball team, and the coach is going 
to divide them up into two teams of five—the Red team and the Blue team, 
say—for a practice scrimmage. She's going to do it randomly, meaning that all 
of the (l5°) ways of assigning the players to the two teams are equally likely. 

Two of the players, Sarah and Rebecca, are friends. "I hope we wind up on 
the same team," Rebecca says. "Well, we have a 50-50 chance," Sarah replies. 

Is Sarah right? 

SOLUTION What this problem is asking us to do is to count, among the ('5°) ways 
of assigning players to the two teams, how many result in Sarah and Rebecca being 
on the same team, and how many result in their being on opposing teams. Sarah is, 
in effect, saying that these two numbers will be equal; we'll calculate both and see 
if she's right. 

Let's start by counting the number of ways of choosing the teams that result in 
Sarah and Rebecca winding up on the same team. We can specify such an assignment 
in two stages: first, we decide which team, Red or Blue, gets the Rebecca/Sarah 
duo. Obviously, there are two possibilities. Having done that, we have to take the 
remaining eight players and divide them into two groups: three will go to the team 
that already has Sarah and Rebecca; five will go the other team. The number of 
ways of doing that is (3), so the total number of team assignments with the two as 
teammates is 

8  = 2 - 5 6 = 1 1 2 .  
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Now let's count the number of assignments that result in Sarah and Rebecca 
opposing each other. Again, we can specify such a choice in two steps: tirst, we 
specify which team, Red or Blue, Rebecca is on; Sarah will necessarily go the other. 
We then have to take the remaining eight players and assign four of them to each 
of the two teams; there are (®) ways of doing this, and so the number of team 
assignments with Rebecca and Sarah opposite is 

= 2 • 70 = 140. 

The conclusion, then, is that Sarah is wrong: it is more likely that she and 
Rebecca will wind up on opposing teams. 

We re not done! One thing we should always look for in doing these problems 
is a way to check the accuracy both of our analysis and of our calculations. Here 
we have a perfect way to do that. We've said that there are a total of 1) ways of 
assigning the 10 players to the two teams, of which 112 result in the two friends being 
teammates and 140 result in their being on opposite teams. Before we're satisfied 
that we've got the correct answer, we should check that in fact ('°j is equal to the 
sum 112 +140 = 252. Let's do it: ' 

10\ 10 • 9 • 8 • 7 • 6 

5 / 5 • 4 • 3 • 2 • 1 

30,240 

~ 120 

= 252. 

™aHVZd0neH5,S.;We ,"an be mUCh m°re confident both that our analysis was correct. 
" d.dn t make any numerical mistakes. We can also sav that the nmhahilitv 

that Rebecca and Sarah wind up on the same team i 
say that the probability 

is 

or about 44%. We'll talk a lot 

112 4 
= — ~ 444 

252 9 

more about probability in Chapter 5. • 

ofs'xtnd^uf Is^fmT n™,that <he 10 P^ers are to be divided into teams 
opponents? re i e y that Sarah and Rebecca will be teammates or 

one of the two^alcuHtionrf tncklef than the one we did above, since in 
sure to check your answer! ^ WC Ca" 1 USC the multiPlication principle. Be 

Scrabb'=. and you have in your rack 
lory. How many ways are there of 'S S°n °( ,hln8 :MJcnis to happen to us a 
words, how many seven-Tetttr wnH T3"6'"8 tileS in "> othl:r 

Of letters) are there that contain 0.^^. andlouTEs? ' arbi'rary ""h185 

I 
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SOLUTION This is actually pretty simpleminded, but it'll lead to something more 
interesting in the next problem. The point is, if we think of our seven-letter word 
as having seven places to fill with Es and Ns, to specify such a word means just to 
specify which three of the places are to be filled with Ns; or, equivalently, which 
four are to be filled with Es. The answer is thus 

= 35. 

EXAMPLE 43,8 This problem may not seem like it has much to do with collections, 
but we'll see in a moment it does. Suppose we live in a city laid out in a 
rectangular grid, and that our job is located three blocks north and four blocks 
east of our apartment, as shown in the picture below. 

home 

work 

i + . 
AR 
¥ 

Clearly, we have to walk seven blocks to get to work each morning. But 
there are many different paths we could take. How many different paths can we 
take, if we stay on the grid? Think about it before you look at the answer. 

SOLUTION To specify a path from our home to work, we have to give a series 
of directions like, "Go one block North, then three blocks East, then another block 
North, then another block East, then another block North," or, for short 

N, E, E, E, N, E, N. 

In other words, paths correspond exactly to words consisting of exactly 3 Ns 
and 4 Es. So this is exactly the same problem as the last one and the answer is 
35 paths. ® 

In general, if we have a k by / rectangular grid, by the same logic the paths 
from one corner to the opposite one (with no doubling back) correspond to words 
formed with k Ns (or Ss) and / Es (or Ws). The number of such paths is thus given 
by the binomial coefficient 

* + / 
k 

n 
it 
¥ 

V 

: 
-



Chapter 4 • Collections 

or, equivalently, the binomial coefficient (*+'). Note the symmetry here: the number 
of paths in a k x I grid is the same as the number of paths in an / x k grid, as the 
formula verifies. 

Exercise 4.3.9 

1. Consider the grid below. How many paths of shortest possible length (that is. 13 
blocks) are there from the point labeled "home" to the point labeled '•work"? 

home 

c X V V 

work 

and Coffee a m.riai u ^presents Mike's House of Donut: 
many paths' from home tn 00 w ^ 'f y°U re t0 arrive at work awake- Hov 

y paths from home to work (agatn of minimal length) pass through Mike's' 

'X5„r,hZSeio:e™o,° • 
sr "*• •*.»« ; -i«,* 

possible paths do you have? C ^ W ^ MlkC S 1S located- Now how man) 

show^utow: section: we ~ ^2« 

-^on of the problem that ^ * 

'^wam'S Lm up soathatCnoStwo boysSare nexTt^0'8^0*!8^611 gir'S" a"d W" 
^ "eXt t0 each oth^- How many way's are thereof "° tW° § 

SOLUTE To stan wtth, the key feature ts to separate the problem into two phases: 

which by girls. TLf^we hawtocT8 ^ ** l° be occuPied by b°ys and 

14-letter word consisting of seven Rs H * S6qUence of §enders or, if you like, a 

and no nro Gs adjacent. Once we've doneThl" '''' "° B' aJl'!r'''" 

'We haw ,o assign an - « gender to each place. 
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In Example 2.5.1, the first step didn't exist: since there were eight boys and 
seven girls, the only possible arrangement of genders was to alternate BGBGBG-
BGBGBGBGB. Once we realized that, we simply had to assign the eight boys to 
the 8 Bs in that sequence, and the seven girls to the seven Gs, for a total of 8! • 7! 
choices. 

In the present circumstances, by contrast, there are different possible gender 
sequences. But not many: since we have to alternate boys and girls, the sequence 
of genders is determined once we specify the first; that is, it's got to be either 
GBGBGBGBGBGBGB or BGBGBGBGBGBGBG. So there are just 2 choices for 
the gender sequence. 

The second step is essentially the same in both Example 2.5.1 and the present 
problem. In the present circumstances, once we've decided on a particular arrange­
ment of genders there'll be exactly 7! ways of assigning the seven boys in class 
to the seven places in line designated for boys, and 7! ways of assigning the 
girls' places; so there'll be 7! -7! ways of assigning the 14 students to appropri­
ate places in line. The answer is thus the number of gender arrangements times 
7! • 7!; that is, 

2 • 7! • 7! = 50.803.200. • 

Now we're ready to tackle Example 2.5.2. First, recall the problem: we have 
a class of 6 boys and 9 girls, and we want to know how many ways to line them 
up assuming we don't want any two boys next to each other in line. If you haven't 
thought about the problem, take some time now to do so, especially in light of the 
example we've just worked out. 

Ready? Here goes. The first step, just as in the last problem, is to separate the 
problem into two phases; specifying which places in line are to be occupied by boys 
and which by girls; and then assigning an actual student of the appropriate gender to 
each place. Moreover, the second step is essentially the same in both examples: once 
we've decided on a particular arrangement of genders there'll be exactly 6! ways of 
assigning the six boys in class to the six places in line designated for boys, and 9! 
ways of assigning the girls' places; so there'll be 6! • 9! ways of assigning the 15 
students to appropriate places in line. The answer is thus 6! • 9! times the number of 
gender arrangements—that is, 6! • 9! times the number of 15-letter words consisting 
of 6 Bs and 9 Gs, with no two Bs in a row. 

OK, then, how do we figure out that number? Here is where it gets slightly 
tricky. The first step is to consider two possibilities: either the sequence ends in a 
B or it ends in a G. Suppose first that the sequence ends in a G. In that case, we 
observe, every B in the sequence is necessarily followed by a G. In other words, 
instead of arranging 6 Bs and 9 Gs—subject to the requirement that no B follow 
another—we can pair off one G with each B to form six BGs, with three Gs left over, 
and count arbitrary arrangements of six BGs with three Gs. We know how many of 
those there are; it's just 

Next, we consider arrangements ending in a B, and we count those similarly: we 
take the remaining five Bs and pair each with a G to form five BGs, with four Gs 
left over. Again, we can take arbitrary arrangements of these five BGs and four Gs, 
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with a B stuck on at the end; and there are 

of these. Altogether, then, there are 84+ 126 = 210 possible gender sequences: and 
since each gives rise to 6! • 9! possible lineups, the total number is 

210-6! -9! = 54,867,456.000. 

4.4 Multinomials 

Say it s now our job to assign college students to dorm rooms. We have a group of 
nine students to assign, and three rooms to assign them to: one a quad, one a triple 
and one a double. The standard question: how many different ways can we do it? 

^ I hat s nothing new," you might say, "we already know how to do it " And 
you d be right: to assign the nine students we could start by choosing four of the 

tr nlewl T'm T * qUad That leaves five students to be assigned to the 
tnple and double: choose three of the remaining five to go to the tripled,nd you're 
one. since the remaining two necessarily go in the double. Since we had (9) = P6 

ways^of making the first choice and g) = 10 ways of making the second, the answ'er 

DC 
Sunntl fol'«leWrhU!? !! + « *> in a different order, 
and" „ 1 !e r f n "" Star"ed "y aSSig"ing ,W0 of ,he '« *>uble. - ssssessssssssss15 -o c: 
What s up with that? 

The answer is. there's no mistake. When „ |ook ^ w „ ,hat 

V4/ \3y 4!5! ' 3!2! 

9! 

while on the other hand 
4!3!2! 

V W 217! ' 4!3! 

9! 

4!3!2!' 

So there's really mf+mg'ncw here6 Buuhe ^ t0 ' '26°' 
the number of ways of distributing some number^of"Umbers that arise here' 
collections of specified size—are so common m t m obJects Into three (or mon 

common that they, like the binomial coefficient 

Section 4.4 • Multinomials 41 

deserve a name and a notation of their own. Think of it this way: maybe the correct 
(or at any rate the symmetric) way to think of the binomial coefficient ("k) is as the 
n u m b e r  o f  w a y s  o f  d i s t r i b u t i n g  a  g r o u p  o f  n  o b j e c t s  i n t o  t w o  c o l l e c t i o n s ,  o f  s i z e  k  
and n — k. Well, in the same vein, whenever we have a number n and three numbers 
a, b and c that add up to n, we can ask how many ways there are of distributing 
n objects into three collections, of sizes a, b and c. We can answer this completely 
analogously to the way we just did the last problem: we first choose which a of our 
n objects are to go into the first group; then which b of the remaining n — a are to 
go into the second. That'll leave c objects, which have to go into the third; so by 
the multiplication principle the number of ways is 

/  n \  / n  —  a \  n \  ( n  —  a ) l  
\<3/ \ b ) al(n — a)! bl(n — a — b)l 

n \  ( « — « ) !  
a \(n — a)\ b\c\ 

n ! 

a l b l c !  
This number is called a multinomial coefficient, and is typically denoted by the 
symbol 

/  n  \  n l  
\ a ,  b ,  c )  a l b l c l  

Similarly, if a ,  b ,  c  and d  are four numbers adding up to n ,  the number of ways 
of distributing n objects into groups of size a, b, c and d is 

( n  \ n '  
\ a ,  b ,  c ,  d )  a l b l c l d l  

and so on. The most general form of this problem would be: suppose we have n  
different objects, which we want to distribute into k collections. The number of 
objects in each collection is specified: the first collection is to have a\ of the objects, 
the second aj and so on; the kth and last collection is to have ak of the objects. We 
ask: how many ways are there of assigning the n objects to the k collections? The 
answer, as we've suggested, is that 

The number of ways of distributing n  objects into groups of size a  \ , a o ,  •  •  •  , a* is 

n l  
a \ l  •  a i l  d k l  

Again, the number ai!.fl2"! that appears here is called a multinomial coeffi­

cient and denoted ( n ). Note that in this setting our old friend the binomial \Cl\.Cl2 Ok/ 

coefficient ("k) could also be written as (k "_k); but it's easier (and unambiguous) to 
j u s t  d r o p  t h e  n  —  k .  

Multinomial coefficients are thus a straightforward generalization of binomial 
coefficients, and are almost as ubiquitous (though, as we just saw, you don't really 
need to know them: if you just know about binomial coefficients and the multipli­
cation principle, you can solve any problem involving multinomial coefficients). 
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Exercise 4.4.1 The job has fallen to you to assign 18 incoming freshmen to rooms 
in one particular dormitory. There are six rooms: two quads, two triples, and two 
doubles. 

1. In how many ways can the 18 freshmen be assigned to the rooms? 
2. After you submitted your list of assignments from part (1) to the Dean, she 

complained that some of them put men and women in the same room. If we 
designate one of the quads, one of the triples, and one of the doubles for women, 
in how many ways can the rooms be assigned to nine women and nine men? 

One classic example of multinomial coefficients is in counting anagrams. By an 
anagram of a word, we mean a rearrangement of its letters: for example. "SAPS" 
is an anagram of "PASS." (Note that each letter must appear the same number of 
times in the anagram as in the original word.) In keeping with our conventions, by 
an anagram we'll mean an arbitrary rearrangement of the letters, not necessarily a 
word in the English language. 

So: how many anagrams does a word have? In some cases this is easy: if a 
four-letter word, say, has all different letters (that is, none repeated) then an anagram 
of the word is simply an ordering of its letters, and so there are 4! of them. For 
example, the word "STOP" has 24 anagrams 

STOP STPO SOTP SOPT SPTO SPOT 
TSOP TSPO TPSO TPOS TOSP TOPS 
OSTP OSPT OTSP OTPS OPST OPTS 
PSTO PSOT PTSO PTOS POST POTS 

By the same token, an n-letter word with n  different letters will have n l  ana­
grams. At the other extreme, the answer is also relatively easy: a word consisting 
of only one letter repeated n times has no anagrams other than itself; and, as we saw 

the example of the Scrabble tiles if a word consists of k repetitions of one letter 
and / repetitions of another, it has (*+') anagrams. 

vj;™6 Wly ab°Ut anagrams (from a mathematical point of 
coun he ana7rLWe 'nEpXampIe 4-3-7- Suppose, for example, we want to 
Ster wordlfthe word "GHEESES." Any such anagram is again a seven-

S then to snecifv • m T"8 S,°tS t0 with the letters C- H< E and ^ tnen to specify an anagram we have to specify 

1. Which one of those seven slots is to be assigned the letter C; 
Which one of those seven slots is to be assigned the letter H; 2 

3. Which three of those 8 seven slots are to be assigned the letter E; and of course 
4. Which two of those seven slots are to be assigned the letter S. 

coefficient " °f " ^ ^ a"SWer is clear; just the multinomial 

G. 1. 3, 2) 1! 1 !3!2T ~ 43(3-

the letters STOP, six of them^STOP,' SPOT OPtT 'toS^POTS  ̂̂  rearrangementS ,°' 
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Exercise 4.4.2 Flow many anagrams does the word "MISSISSIPPI" have? In how 
many of them are the two Ps next to each other? 

Exercise 4.4.3 Consider the following six-letter words: "TOTTER," "TURRET," 
"RETORT," "PEPPER" and "TSETSE." Which one has the most anagrams, and 
which the fewest? (You should try and figure out the answer before you actually 
calculate out the numbers in each case.) 

4.5 Something's Missing 

At the Bright Horizons School, prizes are given out to the students to reward excel­
lence. All the prizes are identical, though the school may choose to give more than 
one prize to a given student. 

In Ms. Wickersham's class at B.H.S.. there are 14 students: Alicia, Barton, 
Carolina, and so on up to Mark and Nancy. Ms. W. has eight prizes to award, and 
has to decide how to give them out—that is, how many prizes each child should get. 
In how many ways can she do this? 

For a slightly different formulation, suppose for the moment that you're the chief 
distributor for the National Widget Importing Co. The NWI has 14 warehouses, called 
(the NWI is not a very fanciful outfit) Warehouse A, Warehouse B and so on up to 
Warehouse N. 

One day, eight containers of widgets show up at the docks, and it's your job 
to say how many of the eight should go to each of the 14 warehouses. How many 
ways are there of doing this? 

Or: you're in the dining hall one day, and there's a massive fruit bowl, featuring 
unlimited quantities of each of 14 different fruits: apples, bananas, cherries and so 
on up to nectarines. Feeling a mite peckish, you decide to help yourself to eight 
servings of fruit, possibly taking more than one serving of a given kind. How many 
different assortments can you select? 

Well, what is the point here? Actually, there are a couple: one, we don't know 
how to solve this problem; and two, we should. Think about it: we've derived, so 
far in this book, three formulas for counting the number of ways of making a series 
of k selections from a pool of n objects: 

« We know the number of ways of choosing a sequence (that is, the order does 
matter) from the pool, with repetitions allowed: it s n k .  

•* We know the number of ways of choosing a sequence from the pool, with no 
repetitions: it's n l / ( n  -  k ) \ .  

« We know the number of ways of choosing a collection (that is. the order doesn't 
matter) from the pool, with no repetitions: it's ("k) = kHl"ik)r 

If we arrange these formulas in a table, as here: 

repetitions allowed without repetitions 

sequences 

collections 

/ / !  

( n - k ) \  

k \ ( n  -  k ) \  
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it's clear that something's missing: we don't have a formula for the number of 
collections of k objects, chosen from a pool of n, with repetitions allowed. That's 
what all those problems we just listed (or that single problem we repeated three 
times) involve. 

So: are we going to tell you the answer, already? Well, yes and no. We are 
going to work out the formula in Chapter 7, at the end of this part of the book. 
But we thought it'd be nice to leave you something to think about and work on in 
the meantime. So we'll leave it as a challenge: can you solve the problem(s) above 
before we get to Chapter 7? 
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