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Probability

!n this chap_tcr we're g(?ing to use our counting skills to discuss some basic problems
in probahnhly. We ll. focus primarily on games—flipping coins. rolling dice, and
playmg poker and bridge—but it should be clear how the same ideas can be applied
in other areas as well.

5.1 Flipping Coins

IShLIr[L);C)(::TI:N)e flip a coin six times. What’s the probability of getting three heads and
” l;l::i, :r;s;:?: Z}(l)lls. WT] haye to start with two hypotheses. The first is simply that
e ;:lm—et at1s, one that on average will come up heads half the time
t;lfc(: f;r;zl{ )e’:; t(f)l;:t;econd hypothgsmz we have to introduce one bit of terminology.
g come o e ?roce§s of ﬂlppmg the coin six times we mean the sequence of
] : j«.‘b] we can think of as a six-letter word consisting of Hs and Ts. How
y possl e ()ut<?omes are there? That’s easy: by the very first formula we worked
out L;\:(I)I:,\g :?e m;Jltlp]ication principle, the number of such seq;JenCes is 20, or 64.
kel Lo tmlz [d t ;I?g(j,j]?ental' hypothesis of probability that all 64 outcomes are equally
heade on it i‘rregk ans simply that the result of each coin flip is equally likely to be
English, o) coiﬁptfglcsllve of what t}}’e result of the previous flips might have been—in
hypothesis: even thou hno memory.” We should emphasize here that this is really a
s boa \'ériﬁed . g,- W;’: re all brogght up nowadays to see this as self-evident, and
Indeed. there were 10221“3 y by exp‘frlment,.it’s not something we can logically prove.
10 be true: when peo lg(PercllOds of human history when just the opposite was thought
after a long run of hé)ads zntairllziigsr;g:eg ?inlfrlatil% oo pelieved, for example,
So: lots ; ) : ¢ly than another head.
three heuti[s Sf(;ll(li(())\lz/teiihise EYPOIhéses. What they mean is that any specific outcome—
(TTTHHH), or whazevzrtjve' lt]alls (HHHTTT), or three tails followed by three heads
i 1in 64 that any specified outcome ity oun T Other words, the probability
Given this. 1 g P yutcome will occur on a given experiment of six flips-
. etermine the likelihood of getting exactly three heads and three tails

By
SIX
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on a given six flips, we have to answer a counting problem: of the 64 possible
outcomes, how many include three Hs and three Ts?

This is also an easy problem: the number of six-letter words consisting of three
Hs and three Ts is just the binomial coetficient

(-

Now, if each of these outcomes occurs é of the time, then in the aggregate we
would expect one of these 20 outcomes to occur

20 5
— = — = 3125
64 16
of the time. In other words, when we flip six coins, we expect to get an equal number
of heads and tails a little less than one-third of the time.
You can probably see the general rule here: if we flip a coin n times, there are 2"
possible outcomes—corresponding to the n-letter words consisting entirely of Hs and
Ts—each of which will on average occur one in 2" times. The number of these out-

comes that involve exactly k heads and n —k tails is (Z) and so our conclusion is that

()

The probability of getting exactly k heads in n flips is ET

We’ll look further into other probabilities associated with flipping coins, but
before we do we should take a moment to point out that this is the basic paradigm
of probability: in general, when all possible outcomes of an experiment or process
are equally likely, and we separate out the collection of outcomes into two kinds,
favorable and unfavorable, the probability of a favorable outcome is simply

number of favorable outcomes

robability of a favorable outcome = , .
P y total number of possible outcomes

Note again that this presupposes that all outcomes are equally likely. If that’s
not the case, or if we define “outcome™ incorrectly, all bets are off, so to speak.

Here are some more examples. As with all probability problems, it’s fun to think
about them a little and try to estimate the odds before you actually go ahead and
calculate them: sometimes they can surprise you (and you can come up with some

ucrative bets).

TUTTERE]  Let’s say you flip a coin eight times. What is the probability of

getting three or more heads?

SOLUTION We have to figure out, of the 28 = 256 eight-letter words consisting
entirely of Hs and Ts, how many have at least three Hs. It’s slightly easier to figure
out how many don’t, and use the subtraction principle: we have to count the number
of such words that have zero, one or two Hs, and by what we’ve done the number is

() ()=t eee

The number of such sequences that do have three or more heads is thus 256 — 37 =
219, and so the probability of getting at least three heads is

219

— ~ 85

256




48 Chapter 5 * Probability

In other words, you'll get three or more heads in eight flips about 85% of
the time. n

IV LEERPY  Say you and a friend are gambling. You flip nine coins; if they split
4/5—that is, if they come up either four heads and five tails or four tails and five
heads—you pay him $1; otherwise, he pays you $1. Who has the better odds?

SOLUTION There are 2° = 512 possible outcomes of the nine coin flips. of which

(9 + ) =126 4+ 126 = 252
4 5) = 1ot Io=

involve either four or five heads. That leaves
512 — 252 =260

outcomes that don’t. Thus the odds are (very slightly) in your favor. n

A variant of the last problem. You and your friend flip six coins:
if three or more come up heads you pay him $1; if two or fewer are heads. he
pays you $2. Who has the better odds?

SOLUTION  This is more complicated than the last problem only in that the payoffs
are different. We start the same way: figuring out, of the 26 = 64 possible outcomes
of the six coin flips, how many result in a win for you and how many in a win for

your friend. First, the number of outcomes with fewer than three heads—that is, with
0, 1 or 2 heads—is the sum

() () (-rvevr

On these 22 outcomes, you win $2. That leaves

64 —22 =42

outcomes where your friend wins $1. You’ll lose $1
than twice as often as you win $2;
favor.

31, in other words, slightly less
S0 once again the odds are slightly in your

E){ercise 5.1.4  You and a friend play
coins, and whoever gets more heads wins;
you win, your friend pays
better odds?

the following game. You each flip three
! ‘,f you get the same number, you win. If
you $1; if your friend wins, you pay her $2. Who has the

Exercise 5.1.5 Say you flip a coin fiv

. ) e times. What’ ili
three in a row will come up the same? * the probability that some

5.2 Tumbling Dice

As far as mathematics goes, dice are not that differ
introduce any new ideas. But because
can do things like add the results of se
Vegas casinos have tables for playing

Let’s start by rolling two dice a
hypotheses: first, the dice are fair; i

. ent from coins; this section won’t
dice have six faces rather than two, and you
veral dice rolls, they're more interesting. (Las
craps; they don’t have coin-flipping tables.)

nd calculating some simple odds. Again, the
n other words, each of the six faces will on
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average come up one-sixth of the time. Second, if we define the outcome of the roll

to be a sequence of two numbers between 1 and 6, the 6 x 6 = 36 possible outcomes
are all equally likely, that is, each occurs l() of the time.

We should stop for a moment here and try to clarify one potential misunderstand-
ing. Most of the time, when we roll a pair of dice, the two dice are indistinguishable
and we don’t think of one as “the first die™ and the other as “the second die.”” But

for the purposes of calculating odds, we should. For example, there are two ways

of rolling “a 3 and a 47: the first die could come up 3 and the second 4, or vice
versa: “a 3 and a 4 thus comes up —% or 11—8 of the time. By contrast, “two 3s”

arises in only one way, and so occurs only %6 of the time. This can be confusing,
and even counter-intuitive: when we roll two identical dice, we may not even know
whether we've rolled “a 3 and a 4” or “a 4 and a 3.” It may help to think of the
dice as having different colors—one red and one blue, say—or of rolling them one
at a time, rather than together.

With this said, let’s calculate some odds. To begin with, let’s say we roll two dice
and add the numbers showing. We could ask, for example: what’s the probability of
rolling a 77

To answer that, we simply have to figure out, of the 36 possible outcomes of
the roll, how many yield a sum of 77 This we can figure out by hand: we could get
alanda6.a2andas5 a3andad,adanda3, a5anda2orabandal,fora
total of six outcomes. The probability of rolling a 7, accordingly, is % or %

By contrast, there is only one way of rolling a 2—both dice have to come up
1—so that’ll come up only 716 of the time. Similarly, there are two ways of rolling

a3—alanda?2 ora?2anda l—so that arises 3—6 or 1—18 of the time. You can
likewise figure out of the odds of any roll; you should take a moment and verify the
probabilities in the table below.

# of ways to

sum achieve the sum probability

2 1 1 in 36
3 2 1 in 18
4 3 lin 12
5 4 1in9
6 5 5in 36
7 6 1in 6
8 5 5in 36
9 4 1in9
10 3 lin 12
11 2 - 1in 18
12 1 1 in 36

Now let’s look at some examples involving three or more dice.

TTTTENX]  Suppose now you roll three dice. What are the odds that the sum

of the faces showing will be 10? What are the odds of rolling a 12?7 Which is
more likely?
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SOLUTION There are 63, or 216, possible outcomes of the roll of three dice: we
just have to figure out how many add up to 10, and how many add up to 12.

There are many ways of approaching this problem—we could even just write
out all the possible outcomes, but it’s probably better to be systematic. Here's one
way: if the sum of the first two rolls is any number between 4 and 9. then there is
one and only one roll of the third die that will make the sum of all three equal to
10. Thus, the number of ways we can get 10 is simply the sum of the number of
outcomes of two dice rolls that add up to 4, the number of outcomes of two dice
rolls that add up to 5 and so on up to the number of outcomes of two dice rolls that
add up to 9. We worked all these out a moment ago; the answer is

3+4454+64+54+4=27.

Thus the probability of rolling a 10 with three dice is 27 out of 216. or simply 1 in
eight.

‘ Similarly, the number of ways we can get 12 is simply the sum of the number
of outcomes of two dice rolls that add up to 6, the number of outcomes of two dice

rolls that add up to 7 and so on up to the number of outcomes of two dice rolls that
add up to 11; that is,

S+6+5+4+342=25

So the probability of rolling a 12 with three dice is slightly less than the probability
of rolling a 10. n

m Let’s again roll three dice; this time, calculate the probability of
getting at least one 6.

SQLUTIQN This is actually simpler than the last problem, because it's easier to be
systematic. Jugt use the subtraction principle: the number of outcomes that include
at least one 6 is 216 minus the number of outcomes that don’t involve a 6: that is,

216 — 5% =216 — 125 = 91.

The probability of getting at least one 6 on three rolls is thus 91 out of 216. u

m For a final example, let’s roll i is ili
Of 2eting oxactly G p s Toll seven dice. What is the probability

;21':,1”0’;7 _This time. it’s the multiplication principle we want to use. We know
are 6" = 279,936 sequences of seven numbers from 1 to 6; we have to count

how many such sequences i
contain exactly two 6’s. We ify such a
sequence by choosing, in turn: 1 e can speciy such

Which two of the seven numbers in the sequence are to be the 6’s; and
What the other five numbers in the sequence are to be

For‘ the first, the number of choices is just
specifying a sequence of five numbers other t
of choices is thus 5°
is thus

;
(5), or 21. The second involves simply
= 3,12 han 6, that is, from 1 to 5; the number
= 3,125. The total number of the sequences we're counting

21 x 3,125 = 65,625
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and the probability of rolling such a sequence is

65,625
279.936

In other words, our chances are slightly less than 1 in 4. |

234.

Exercise 5.2.4 Say you roll five dice. What are the odds that you’ll get at least
one 5 and at least one 67

Exercise 5.2.5 1In the game of Phigh, each player rolls three dice; his or her score

is the highest number that appears.

1. What is the probability of scoring 17

2. What is the probability of scoring 27

3. Your opponent scored 4. What is the probability that you'll win (that is, score 5
or 6)?

5.3 Playing Poker

It's time to graduate from dice to cards, and we're going to focus here primarily on
probabilities associated with poker.

To start with, let’s establish the rules. A standard deck consists of 52 cards.
There are four suits: spades (#), hearts (©), diamonds (<) and clubs (). There are
13 cards of each suit, with denominations 2, 3, 4 up to 10, jack (J). queen (Q), King
(K) and ace (A). A poker hand consists of five cards: the ranks of the various hands

are as follows:

A pair: a hand including two cards of the same denomination

Two pair: a hand including two cards each of two denominations

Three of a kind: a hand including three cards of the same denomination

Straight: a hand in which the denominations of the five cards form an unbroken
sequence. For this purpose an ace may be either high or low; that is, A2345
and 10J QK A are both straights.

Flush: a hand in which all five cards belong to the same suit

Full house: a hand consisting of three cards of one denomination and two cards
of another denomination

Four of a kind: a hand including four cards of the same denomination

Straight flush: a hand consisting of five cards of the same suit forming an

unbroken sequence

Note that when we talk about a hand whose rank is “exactly three of a kind,” we’ll

mean a hand of that rank and no higher.
We’re going to start with the basic question: if you're dealt five cards at random,

what are the odds of getting a given type of hand? Here “at random™ means that all
the possible hands, of which there are
52 52-51-50-49-48
(5) T T 5.4.3.2-1

= 2,598.960,

are equally likely to arise; so that the odds of getting a particular type of hand are
just the total number of such hands divided by 2.598.960. Our goal, then, will be
(as usual) to count the number of hands of each type.

. _ —_————————————-————-——-—_—'——_——'—-—’
v
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We'll start at the top, with straight flushes. These are straightforward to count
via the multiplication principle: to specify a particular straight flush. we simply have
to specify the denominations and the suit, which are independent choices. There are
four suits, obviously; and as for the denominations, a straight can have as its low
card any card from A up to 10 (remember that we count A2345 as a straight), so
there are 10 possible denominations. There are thus

4 x10=40

straight flushes, and the probability of being dealt one in five cards is accordingly

40
2,598,960

or approximately 1 in 64,974. Not an everyday occurrence: if you play. for example,
on the order of two hundred hands a week, it'll happen to you roughly once in six
Or seven years.

Next is four of a kind. Again, the multiplication principle applies more or less
directly: to specify a hand with four of a kind, we have to specify first the denomi-
nation of the four, and then say which of the remaining 48 cards in the deck will be
the fifth card of the hand. The number of choices is accordingly

~ 0000153

13 x 48 = 624,
and the probability of being dealt one in five cards is accordingly

624
2,598,960

or, in g‘ruder terms. approximately 1 in 4,000. A good bit more likely than a straight
flush. in other words, but don’t hold your breath: again, if you play on the order of
two hundred hands a week, on average you'll get two or three of these a year.

‘ Note that if we wanted to calculate the odds of getting “four of a kind or better”
we d have to add the number of hands with four of a kind and the number of hands
with a §1ra1ght flush. In general, we're going to calculate here the odds of getting a
hqnd of exactly a given rank; to count the number of hands of a specified rankcor
higher you'll have to add up the numbers of hands of each rank above

Full hous‘es are also straightforward to count. Since a full hou%é consists of
three cards‘ of one denomination and two cards of another, we have t;) specify first
the denomination of which we have three cards, and the denomination of which
we haw"e two: ther} we have to specify which three of the four cards of the first
denomination are in the hand, and which two of the second. Altogether, then, the

number of choices is
4 4
13x12><<3)x<2>:13x12x4x6

~.00024001

= 3,744,
The probability is
3,744
3,598,960 ~ 0014406

or approximately 1 in 700.
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Flushes are even easier to count: we specify a suit (4 choices), and then which
five of the 13 cards in that suit will constitute the hand. The number of flushes is thus

13
4x<5>:4><1,287

=5,148.

Remember, though, that this includes straight flushes too! If we want to count the
number of hands with exactly a flush and not any higher rank, we have to subtract
those 40 hands, so that the number is

5,148 — 40 = 5.108.

The probability is thus

5,108

— ~ .0019654
2,598.960

or approximately 1 in 500.

If you're with us so far, straights are likewise simple to count: we have to specify
the denominations of the cards—10 choices, as we counted a moment ago—and then
the suits, which involve four choices for each of the five cards. The total number of
straights is therefore

10 x 4% =10 x 1.024
= 10,240;

and if we exclude straight flushes, the number of hands whose rank is exactly a
straight is

10,240 — 40 = 10,200.

The probability is
10,200
2,598,960
or very approximately 1 in 250.
Next, we count hands with exactly three of a kind. Initially, this is similar to

the cases we’ve done before: we have to specify the denomination of the three (13
choices); which three of the four cards of that denomination are to be in the hand

((g) =4 choices), and finally which two of the remaining 48 cards of the deck will

~ 0039246

round out the hand.

But here there’s one additional wrinkle: since we’re counting only hands with
the rank “three of a kind,” and not “full house,” the last two cards can’t be of the
same denomination. Now, if we were counting the number of sequences of two cards
of different denominations from among those 48, the answer would be immediate:
we have 48 choices for the first, and 44 for the second, for a total of 48 x 44 = 2,112
choices. Since the order doesn’t matter, though, and because each collection of two
such cards corresponds to two different sequences, the number of pairs of cards of
different denominations from among those 48 is

4—%& = 1,056.
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The number of hands with exactly three of a kind is thus
13 x 4 x 1,056 = 54,912

and the probability is
54,912
2,598.960
or roughly 1 in 50. In other words, if your typical night of poker consists of two

hundred hands, you're likely to be dealt three of a kind four times.

Counting hands with exactly two pair is slightly easier. We specify the two
denominations involved; we have (lj) = 78 choices there. Then we have to say

which two of the four cards of each of these denominations go in the hand: that's

4 2
=6 =
(2) 36

choices. Finally,. we have to say which of the remaining 44 cards in the deck (of the
other 11 denominations) will complete the hand. The total number is. accordingly.

78 x 36 x 44 = 123,522

~ 021128

and the probability is
123,522

2.598.960 ~ .047539
or approximately 1 in 20.
Finally, we come to the hands with exactly one pair. We can do this in a similar

fashion to our count of hands with three of a kind; choose the denomination of

the pair (13); choose two cards of that denomination ((j) = 6). and finally choose
Lhreeicar.ds among the 4.18 cards not of that denomination. But, as in the case of
’andsfwnh th'ree of a Kind, there’s a wrinkle in that last step: the three cards not

pm of the pair must all be of different denominations. Again, if we were counting
zzquezes. rather .than cqllectlons, of cards, this would be straightforward: there’d be
® ;u' X 4? tchhou:es. jmce we have to count collections, however, and since every
coltection of three cards corresponds to 3! = 6 differ ‘
f thre = ent ‘ f

such collections is seguences. (he mumber o

48 - 44 . 40
——— = 14,080

The number of hands with exactly a pair is thus

13 x 6 x 14,080 = 1,098,240
and the probability is

1,098,240
. 2,598,960
or a little worse than half. As we remark

being dealt a pair or better, we have to a
a pair: the total is

~ 42256

ed before, if we want to find the odds of
dd up the numbers of all hands better than

40+ 624 43,744 + 5,108 + 10,200 + 54,912 + 123,552
+ 1.098,240 = 1,296,420.
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Now. there’s another way to calculate this number, and it gives us a way to
check a lot of our calculations. We can count the number of hands with a pair or
better by the subtraction principle: that is, count the hands with no pairs. and subtract
that from the total number of hands. To count the hands with no two cards of the
same denomination, as in the calculation we did of hands with three of a kind or with
a pair, we count first the sequences of five cards, no two of the same denomination:
this number is simply

52 x 48 x 44 x 40 x 36.

But every such hand of cards corresponds to 5! = 120 sequences, so the number of
hands with no two cards of the same denomination is

52 x 48 x 44 x 40 x 36
120

But we e not quite done: these 1,317,888 hands include straights, flushes and straight
flushes, and if we want to count hands that rank below a pair, we have also to exclude
these. Thus the total number of poker hands ranking below a pair will be

1,317,888 — 40 — 5,108 — 10,200 = 1,302,540,

= 1,317.888.

and the number of hands ranked a pair or better will be

2,598,960 — 1,302.540 = 1,296,420

as we predicted. Note that the probability of getting a pair or better is thus
1.296,420

T 49843
2.598,960

or very nearly one in two.

Exercise 5.3.1 What are the odds of being dealt a busted flush—that is, four cards
of one suit and a fifth card of a different suit?

Exercise 5.3.2 What are the odds that a five-card poker hand will contain at least
one ace?
Exercise 5.3.3 This doesn’t actually have anything to do with poker,! but what

are the odds that a five-card poker hand will consist entirely of cards of the same
color? Is this the same as the odds that 5 coins flipped will all come up the same?

Why, or why not?

5.4 Really Playing Poker

This section is probably unnecessary, but our lawyers insisted that we include it.
The odds we’'ve just calculated are obviously relevant to playing poker, but
they’re only the tip of the tip of the iceberg. In almost all versions of poker, your
hand isn’t simply dealt to you all at once; it comes in stages, after each of which
there's a round of betting. Each time you have to bet, you have to calculate the

"Unless, of course. you're playing with extremely nearsighted people and can pass one of these

off as a flush.
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likelihood of winding up with each possible hand, based on what you have already
and how many cards you have yet to receive.

What’s more. most poker games involve at least some cards dealt face up. and
every time a card is dealt face up, it changes the odds of what you're likely to
receive on succeeding rounds, and what your hand is likely to wind up being. In
addition, every time someone bets (or doesn’t) or raises (or doesn’t), it changes
the (estimated) odds of what their hole cards are, and hence what cards you're
apt to be dealt on succeeding rounds. In fact, every time it’s your bet, you have
to calculate the odds of your achieving each possible hand. and the amount you
stand to win or lose depending on what you get (which depends in turn on other
factors: what the other players get, how much is currently in the pot, how much the
other players will contribute to the pot and how much you’ll have to contribute to
the pot).

To be really good at poker, you have to be able to calculate these odds accurately
(and unsentimentally). At the same time, it can never be exact: for one thing, no one
can make that many calculations that quickly. For another, figuring out how likely
it is that the player across the table really does have a king under is necessarily
an inexact science. In other words, serious poker exists somewhere in that gray
area between mathematics and intuition. Those of us with weaknesses in either field
should probably limit our bets.

5.5 Bridge

Bridge. is a card game that calls, as much as poker, for estimations of odds. We're
not going to discuss the game in any depth or detail at all, but there is one aspect
of the game that makes for a beautiful problem in probability, which we'1l describe.

In bridge, each player is dealt a hand of 13 cards from a standard deck. This
means there are

52
(H) = 635,013,559,600

possible hands. all of which we’re going to assume are equally likely on any given
QeulA pr. every hand has what is called a distribution, meaning how many cards
it has from the four different suits: for example, a hand with four cards of one suit
and three each of the others is said to have a 4333 distribution: a haﬁd with four
cards each of two suits. three of a third and two of the final sui’t is said to have 2
4432 distribution, and so on.

.The question we want to take up here is: what are the odds of a bridge hand
having a given distribution? As a special case, we could ask: which is more likely
to oceur, a 4333 distribution, or a 4432? How do the odds of either C(;m are to the
odds of, getting a relatively unbalanced distribution, like 54317 ’

Let’s sta'r? by counting the number of hands with a 4333 distribution. Basically,
we can spec'lfy such a hand in two stages: first, we specify which suit i.S to be the
tou.r-card suit; and then we have to specify which of the 13 cards‘ frorﬁ each suit
we're t(.) receive. To specify the four-card suit, there are clearly 4 clioiceS’ and as for
s:peufymg Wh1ch of the 13 cards from each suit we're to receive, we hav;: to choose
four cards from one suit and three from each of the others. B;/ the multiplication

£33y
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principle. then, the total number of choices is
| 13 3 3
4. 3 . . 13 13
4 3 3 3

130 130 13 13!
T4191 31101 31100 310!

or, in factonals,

which works out to

= 66,905,856, 160.

The probability of being dealt a hand with a 4333 distribution is thus
66,905,856.160
635,013,559.600
or slightly better than one in ten.

Let’s do the 4432 distribution next. The idea is the same: first we figure out how
many ways we can match the four numbers with the four suits; then. once we’ve
specified how many cards of each suit we're to receive, we calculate how many
ways we can choose those cards. For the first part, we have to choose the suit with
two cards (four choices) and then the <uit with three (three choices): the remaining
two suits will each get four cards. The total number of choices is thus

4.3 (13) <13> (13>.<13>
4 4 3 2
4.3 130 13t 13! 13!
- 419 419! 31100 211!
= 136.852.887.600.

The probability of being dealt a hand with a 4432 distribution is thus
136.852,887.600
635.013.,559.600

or slightly better than one in five. So in fact we see that you're more than twice as
likely to be dealt a hand with a 4432 distributions as one with a 4333 distribution!
By now you've probably got the idea; so you can do some yourself:

Ll

21

Exercise 5.5.1 Calculate the probability of being dealt a hand with

1. a 5332 distribution;

2. a 4441 distribution: and

3. a 7321 distribution.

Before you make the calculations, guess which will be most likely and which least.

The next exercise has to do with a basic problem in bridge: once you've seen
your cards, what are the odds that govern what everyone else’s hand looks likg?
Clearly what you’ve got has some effect on the odds: if you have I Sp‘ddes,!tor
example, you can be certain that no one at the table hqs a 4333 distribution. It's a
hard problem, but if you can do it you can call yourself a master counter.

- _‘M—’.
—~y
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5.6 The Birthday Problem

Exercise 5.5.2  Say you're playing bridge, and you pick up your hand to discover
you have a 7321 distribution. What are the odds that the player to your left has a
4333 distribution?

Everyone has a birthday; and, leaving aside for the moment those unfortunate souls
born on February 29 of a leap year, everyone’s birthday is one of the 365 days of
the standard year. The probability of two people selected at random having the same
birthday is, accordingly, 1 in 365.

So, suppose now we get 10 people together at random. What are the odds that
two have the same birthday? How about a group of 25, or 50. or 100? It's pretty
clear that as the number of people in the group increases, so does the probability of
two people having the same birthday—when you get up to 366 people. of course,
it’s a lock—so0 we might ask: for what size group is there actually a better than 50%
chance of two people having the same birthday? We know how to calculate the odds
by now, of course, but before we do so you might want to take a few moments out
and think about it—take a guess.

. Tlme’s up; here we go. Suppose we line up a group of. say. 50 people. and list
their bx.rthdays. We get a sequence of 50 days of the year; and assuming the people
were picked randomly—so that each one is as likely to have been born on one day
as another—of the 3653 possible such sequences, all are equally likely.

So: how many of these 36550 possible sequences involve a repeated day? Well,
we know how many don’t: the number of sequences of 50 days without repetition
1s, by the standard formula, the product

(365)!
BTSM or 365-364-363-....317.316.

The probability of there not being a repeated birthday among
el

50 people is thus
365-364-363.....317.316

people at random, the probability i

Pretty surprising, whenpyolilatt);)lilrtli :asbgﬁtt?tr. an 97% that two Wil share a birihdy!
In fact. if you work it out,

of a repeated birthday is 50.7

people the probability

It's already the case with 23 people that the probability

n half; and by the time you get to 30
le will have the same birthday.

Chapter

Pascal's Triangle
and the Binomial
Theorem

If you're with us so far—if most of the calculation§ in 'the last chapter make sense to
you—you’ve got a pretty good idea of what counting is abo.ut. In purtl.culur. you've
seen all the ideas and techniques of counting that we're going to use in the rest of
this book. From a strictly logical point of view, you could proceed directly to the
second part. ‘ .

But in the course of our counting, we’ve come across a class of numbels‘. th.e
binomial coefficients, that are worth studying in their own right, both fo.r the fasci-
nating properties and patterns they possess and for the way they crop up in 5o m:dny
areas of mathematics. We're going to take some time out here, accordingly, and
devote a chapter to the binomial coefficients themselves. These detours are common
in mathematics—the tools that we develop to solve a particular problem often open
up surprising areas of investigation in their own right.

6.1 Pascal’s Triangle

Probably the best way to go about looking for patterns in binomial coefficients is
simply to make a table of them and stare at it—maybe we’ll be.able to gleduce
something. (Mathematicians like to give the impression that they arrive at their con-
clusions by abstract thought, but the reality is more prosaic: most of us at lea:% start
with experimentation.) As for the form this table should take, there’s a clqssu: way
of representing the binomial coefficients that is particularly well-suited to displaying
e .
their patterns, called Pascal’s triangle. n |
PI:mcal’s triangle consists of a sequence of rows, where each row gives thehvalues
binomi i ! a parti ¢ ample, the row
of the binomial coefficients (}) fo.r a particular value of n. For examp
with n = | has only two numbers in 1t:

BRI

The row with n = 2 has three:

B (- 0
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