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2.1 Choices

Let’s suppose you climb out of bed one morning, still somewhat groggy from the
night before. You grope your way to your closet, where you discover that your cache
of clean clothes has been reduced to four shirts and three pairs of pants. It’s far
too early to exercise any aesthetic judgment whatsoever: any shirt will go with any
pants; you only need something that will get you as far as the dining hall and that
blessed, life-giving cup of coffee. The question is,

How many different outfits can vou make out of your four shirts and three
pairs of pants?

Admittedly the narrative took a sharp turn toward the bizarre with that last
sentence. Why on earth would you or anyone care how many outfits you can make?
Well, bear with us while we try to answer it anyway.

Actually, if you thought about the question at all, you probably have already fig-
ured out the answer: each of the four shirts is part of exactly three outfits, depending
on which pants you choose to go with it, so the total number of possible outfits is
3 x4 = 12. (Or, if you like to get dressed from the bottom up, each of the three
pairs of pants is part of exactly four outfits; either way the answer is 3 x 4.) If we're
feeling really fussy, we could make a table: say the four shirts are a golf shirt, an
oxford, a tank top and a T-shirt extolling the virtues of your favorite athletic wear,
and the pants consist of a pair of jeans, some cargo pants and a pair of shorts. Then
we can arrange the outfits in a rectangle:

golf shirt oxford shirt tank top T-shirt
w/ jeans w/ jeans w/ jeans w/ jeans
golf shirt oxford shirt tank top T-shirt

w/ cargo pants  w/ cargo pants  w/ cargo pants  w/ cargo pants

golf shirt
w/ shorts

oxford shirt tank top T-shirt
w/ shorts w/ shorts w/ shorts
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Now, you know we’re not going to stop here. Suppose next that. in addition to
picking a shirt and a pair of pants, you also have to choose between two pairs of
shoes. Now how many outfits are there?

Well, the idea is pretty much the same: for each of the possible shirt/pants
combinations, there are two choices for the shoes, so the total number of outfits is
4x3x2=12x2=24. And if in addition we had a choice of five hats, the total
number of possible outfits would be 4 x 3 x 2 x5 = 120—you get the idea.

Now it’s midday and you head over to the House of Pizza to order a pizza
for lunch. You feel like having one meat topping and one vegetable topping on
your pizza; the House of Pizza offers you seven meat toppings and four vegetable
toppings. How many different pizzas do you have to choose among?

“That’s the same problem with different numbers!” you might say, and you'd
be right: to each of the seven meat toppings you could add any one of the four
vegetable toppings, so the total number of different pizzas you could order would
be 7 x 4, or 28.

Evening draws on, and your roommates send you out to the local House of
ViQeos to rent some videos. You're going to have a triple feature in your room: one
action film, one lighthearted romantic comedy and one movie based on a cartoon
or video game. The House of Videos, following its corporate plan, has in stock a
thousand copies each of seven action movies, five lighthearted romantic comedies and
23 n‘l‘ovies’ based on cartoons or video games. How many triple features can you rent?

That’s the same prqblem again!” you might be thinking: the answer’s just the

ideo game, or 7x 5% 23 = 805,
But you're right, it’s time to state the
18 called the multiplication principle:

The number of ways of making a Sequence of independent choices is

. the product
of the number of choices at each step.

2.2 More Examples

An old-style Massachusetts 1j
followed by three letters. How
can there be?

T

cense plate has on it 5 se

. quence of three numbers
many different old-style M

assachusetts license plates

26 ch

his is eas swer: i
o ea }é 'enhougfh 10 answer: we have 10 choices for each of the numbers. and
< ach of the letters; and Since none of these choices is constrainéd in
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any way, the total number of possible license plates is
10 x 10 x 10 x 26 x 26 x 26 = 17,576,000

A similar question is this. Suppose for the moment that by “word” we mean
any sequence of the 26 letters of the English alphabet—we’re not going to make
a distinction between actual words and arbitrary sequences. How many three-letter
words are there?

This is just the same as the license plate problem (or at least the first half): we
have 26 independent choices for each of the letters. so the number of three-letter
words is 26° = 17.576. In general,

# of 1-letter words = 26

# of 2-letter words = 26~ = 676

# of 3-letter words = 26° = 17,576

# of 4-letter words = 26% = 456,976

# of 5-letter words = 26° = 11,881,376
# of 6-letter words = 26° = 308.915,776

and so on. ’ .
Next, let’s suppose that there are 15 students in a class, and that they’ve decided

to choose a set of class officers: a president, a vice president, a secretary and a
treasurer. How many possible slates are there? That is, how many ways are there of
choosing the four officers? '

Actually, there are two versions of this question, depen.d.mg on whether or not a
single student is allowed to hold more than one of the positions. If we assume first
that there’s no restriction of how many positions one person can hold, the problem
is identical to the ones we’ve just been looking at: we have 15 Choices‘each.for
the four offices, and they are all independent, so that the total number of possible

choices is
15 x 15 x 15 x 15 = 50.625.

Now suppose on the other hand we impose the rule‘ that Do person can hold
more than one office. How many ways are there of choosing officers?

Well, this can also be done by the multiplication principle. We start (say) .by
choosing the president; we have clearly 15 choices there. Next, we choose the.v1ce
president. Now our choice is restricted by the fact that our newly self’:cFed president
is no longer eligible, so that we have to choose among .the 14 remaining students.
After that we choose a secretary, who could be anyone in the class except the two
officers already chosen; so we have 13 choices here; and fma'lly we c.hoose a'treasurer
from among the 12 students in the class .()ther than the president, vice president and
secretary. Altogether, the number of choices is

15 x 14 x 13 x 12 = 32.760.

Note one point here: in this example, the actual chpice f)f* say, the vice president

does depend on who we chose for president; the choice of a secretary does depend

on who we selected for president and vice president, and so on. B.ut the.nu.mber Qf
choices doesn’t depend on our prior selections, so the multiplication principle still

applies.
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In a similar vein, we could modify the question we asked a moment ago about
the number of three-letter words, and ask: how many 3 letter words have no repeated
letters? The solution is completely analogous to the class-officer problem: we have

26 choices for the first letter, 25 for the second and 24 for the third. so that we have
a total of

26 x 25 x 24 = 15,600
such words. In general, we can calculate

# of 1-letter words = 26
# of 2-letter words w/o repeated letters — 26 - 25 =650
# of 3-letter words w/o repeated letters = 26 .25 .24 — 15,600
# of 4-letter words w/o repeated letters — 26-25-24 .23 = 358,800
# of 5-letter words w/o repeated letters = 26 -25.24.23.20 — 7.893.600
# of 6-letter words w/o repeated letters = 26 -

25.24.23.22.2] = 165.765.600
and so on.

Now, here’s an interesting (if somewhat tangential) question. Let’s compare
the numbers of words of each length to the number of words with no repeated
let}ers. What percentage of all words have repetitions, and what percentage don’t?

Before we tabulate the data and

. . give the answer, you mieht a f
minutes and think about the question f Sher ke Tew

- What would your guess be?

STOP.
CLOSE THE BOOK.
GRAB A PAD OF PAPER AND A PEN.
WORK OUT SOME EXAMPLES ON YOUR OWN.
THINK.
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length  number of words without repeats % without repeats

1 26 26 100.00
2 676 650 96.15
3 17,576 15,600 88.76
4 456.976 358,800 78.52
5 11.881.376 7.893,600 66.44
6 308.915.776 165.765.600 53.66
7 8.031.810,176 3.315.312,000 41.28
8 208.827,064,576 62.990.928,000 30.16
9 5.429,503.678,976  1,133.836,704,000 20.88

Now that’s bound to be surprising: among six-letter words, those with repeated
letters represent nearly half, and among seven-letter words they already substantially
outnumber the words without repeats. In general, the percentage of words without
repeated letters drops off pretty fast: by the time we get to twelve-letter words, fewer
than 1 in 20 has no repeated letter. We'll see another example of this phenomenon
when we talk about the birthday problem in Section 5.6.

2.3 Two Formulas

There are two special cases of the multiplication principle that occur so commonly
in counting problems that they’re worth mentioning on their own, and we’ll do that
here. Neither will be new to us; we’ve already encountered examples of each.

Both involve repeated selections from a single pool of objects. If there are no
restrictions at all on the choices, the application of the multiplication principle is
particularly simple: each choice in the sequence is a choice among all the objects in
the collection. If we’re counting three-letter words in an alphabet of 26 characters,
for example—where by “word” we again mean an arbitrary sequence of letters—
there are 26%; if we’re counting four-letter words in an alphabet of 22 characters,
there are 22%; and so on. In general, we have the following rule:

The number of sequences of k objects chosen from a collection of 1 objects is n*.

The second special case involves the same problem, but with a commonly applied
restriction: we’re again looking at sequences of objects chosen from a common pool
of objects, but this time we’re not allowed to choose the same object twice. Thus,
the first choice is among all the objects in the pool; the second choice is among all
but one, the third among all but two, and so on; if we’re looking at a sequence of &
choices, the last choice will be among all but the k — 1 already chosen. Thus, as we
saw, the number of three-letter words without repeated letters in an alphabet of 26
characters is 26 - 25 - 24; the number of four-letter words without repeated letters in
an alphabet of 22 characters is 22 -21-20- 19; and so on. In general, if the number
of objects in our pool is n, the first choice will be among all n; the second among
n — 1, and so on. If we’re making a total of k choices, the last choice will exclude
the k —1 already chosen; that is, it’ll be a choice among the n — (k— 1) =n — k + 1
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objects remaining. The total number of such sequences is thus the product of the
numbers from n down to n — k + 1. We write this as

ne(m=1)-(n=2) - (n—k+1).

where the dots in the middle indicate that you're supposed to keep going multiplying
all the whole numbers in the series starting with n, n — 1 and #» — 2. until you get
down to n — k + 1. Time for a box:

The number of sequences of & objects chosen without repetition from a collection
of n objects is

n-(n—1)-(n—2)~----(n—k+1).

Exercise 2.3.1 In one of the Massachusetts state lotteries, the winning number
1s chosen by picking six ping-pong balls from a bin containing balls labeled “1”
through “36” to arrive at a sequence of six numbers between 1 and 36, Ping-pong
balls are not replaced after they’re chosen; that is, no number can appear twice in
the sequence. How many possible outcomes are there?

~ Note théli[ in this last exercise, the order in which the ping-pong balls are chosen
s relevant: if the winning sequence is “17-32-5-19-12-27" and you picked *32-17-

5-19-12-27. you don’t get to go to work the next day and tell your boss what you
really think of her.

Exercise 2.3.2 The Hebrew alphabet h
are possible in Hebrew? (Again, by “
five characters from the Hebrew alph
letters?

as 22 letters. How many five-letter words
word” we mean just an arbitrary sequence of
abet.) What fraction of these have no repeated

2.4 Factorials

m Suppose that we have a first-grade class of 1

want to line them up to g0 out to re
there—that is. in how many differ

5 students, and we
cess. How many ways of lining them up are
ent orders can they be lined up?

the answer is

1 ~10-9-8-7-6~5-4‘3~2- 1= 1,307,674,368,000,
——more than a trillion orderings.

15-14.13.12.

or about 1.3 x 192
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In general, if we ask how many ways there are of placing n objects in a sequence,
the answer is the product of all the whole numbers between 1 and 7. This is a quantity
that occurs so often in mathematics (and especially in counting problems) that it has
its own symbol and name:

The product n-(n —1)- (n —2)-----3-2 -1 of the numbers from | to n is
written n! and called “n factorial.”

Here’s a table of the factorials up to 15:

1 1

2 2

3 6

4 24

5 120

6 720

7 5.040

8 40,320
9 362.880
10 3.628.800
11 39.916,800

12 479.001,600

13 6.227,020,800
14 87,178.291,200
15 1,307.674,368,000

There are many fascinating things to be said about these numbers. Their size
alone is an interesting question: we’ve seen that 15 factorial is over a trillion; approx-
imately how large a number is, say, 100 factorial? But we’ll leave these questions
aside for now. At this point, we'll be using factorials for the most part just as
a way of simplifying notation. We'll start with the last formula of the preceding
section.

It’s pretty obvious that writing 15! is a whole lot easier than writing out the
product 15-14-13-12-11-10-9-8-7-6-5-4-3-2-1. But there are other, less
obvious uses of the notation. Suppose, for example, that we wanted to make up a
baseball team out of the 15 kids in the class—that is, choose a sequence of nine of
the kids in the class of 15, without repetition. We’d have 15 choices for the pitcher,
14 for the catcher, 13 for the first baseman, and so on. When you choose the ninth
and last player, you’ll be choosing among the 15 — 8 = 7 kids left at that point, so
that the total number of teams would be

15-14-13-12-11-10-9-8 7.

But there’s a faster way to write this number, using factorials. Basically, we
could think of this product as the product of all the numbers from 15 down to 1,
except we leave off the numbers from 6 down to 1—in other words, the product of
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the numbers from 15 to 1 divided by the product of the numbers from 6 to 1. or
15!
6!

Now, this may seem like a strange way of writing out the.product: it seems
inefficient to multiply all the numbers from 15 to 1 and then divide by Fhe proc}uct
of the numbers you didn’t want in the first place. And it is—no one In his right
mind would calculate out the number that way. But just as notation, l(% tak;s up
a whole lot less space than “15-14-13-12-11-10-9-8 -7, and we'll go with it.
For example, we’ll rewrite the boxed formula from the last section:

The number of sequences of k objects chosen without repetition from a collection
of n objects is n!/(n — k)!

One final note about factorial notation: it is the standard convention that 0! = 1.
You could think of this as the answer to a Zen koan: “How many ways are there
of ordering no objects?” But we’ll ignore the philosophical ramifications here and
simply accept it as a notational convention: it just makes the formulas come out
better, as we’ll see.

2.5 Another Wrinkle

The multiplication principle itself is completely straightforward. But sometimes there
may be more than one way to apply it; and sometimes one of those ways will work
when another doesn’t. We have to be prepared, in other words, to be flexible in
applying the multiplication principle. We’ll see lots of examples of this over the
course of this part of the book; here’s one of them.

To start with, let’s take a simple problem: how many three-digit numbers can
you form using the numbers 1 through 9, with no repeated digit? As we've seen
already, this is completely straightforward: we have nine choices for the first digit,
then eight choices for the second and finally seven choices for the third, for a total of

9% 8x7=504
choices.

Now let’s change the problem a bit: suppose we ask, “How many of those 504
nur;?ers are 0odd?” In other words, how many have as their third digita 1, 3,5, 7
or !

We can try to do it the same way: as before
digit and eight for the second. But when we get
example, if the first two digits we selected were 2 and 4, then the third digit could
be any of the numbers 1, 3,5, 7 or 9, 50 we have five choices. If the first two digits
were 5 and 7, however, the third digit could only be a 1, 3 or 9: we have only three
choices. The choices, in other words, don’t seem to be indepen;ient ’

szt they are if we make them in q different order! Suppose .that rather than
choosing the first digit first and so on, we go from right to left instead—in other
words. choose the third digit first, then the middie and finally the first. Now we can
choose the last digit freely among the numbers 1, 3,5,7 and 9, for .a total of five

» there are nine choices for the first
to the third digit, we're stuck. For
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choices. The choice of the middle digit is constrained only by the requirement that
it not repeat the one we’ve already chosen: so there are eight choices for it, and
likewise seven choices for the first digit. There are thus

5x8x7=280

such numbers.

Sometimes we find ourselves in situations where the multiplication principle may
not seem applicable, but in fact its application is completely straightforward as long
as we keep our wits about us. Here's an example:

W Suppose that in the class we were discussing in Example 2.4.1
there are eight boys and seven girls, and we want to line them up so that no two
boys are next to each other. How many ways are there of doing this?

SOLUTION Actually, before we go and give the solution, let’s take a moment and
see that the multiplication principle fails. In fact, if we try to use the same approach
as we took to in solving Example 2.4.1, it screws up already at the second step.
That is, we seemingly have as before 15 choices of who’s to be first in line. But
the numbers of possible choices for who goes second depends on our first choice: if
we chose a girl to be first, there are no restrictions on who goes second, and there
are 14 choices; but if we chose a boy to be first in line, the second in line must be
chosen from among the seven girls.

We need, in other words, a different approach. But here we’re in luck: if we
think about it, we can see that since there are 8 boys out of 15 kids, and no two boys
are to be next to each other in line, the line must alternate boy/girl/boy/girl until the
final place, which must be a boy. In other words, the odd-numbered places in line
must all be occupied by boys, and the even places by girls.

Thus, to choose an ordering of the whole class subject to the constraint that no
two boys are next to each other, we have to choose a first boy, a second boy, and
so on until we get to the eighth and last boy; and likewise we have to choose a first
girl, a second girl, and so on to the seventh girl. Put another way, we simply have to
order the boys and the girls separately. We know that there are 8! ways of ordering
the boys and 7! ways of ordering the girls, so the multiplication principle tells us
that the total number of ways of lining up the class is

8!.7! = 203,212,800. |

SOV PRAW] One last puzzier: suppose that there were six boys and nine girls,
and again we wanted to line up the class so that no two boys are next to each
other. How many ways would there be of doing this?

In fact, this is a much harder problem, because we can’t avail ourselves of the
trick we used in the last example. But it is one you’ll learn how to do. So think for a
while about how you might try to approach it, and in Section 4.3 we promise we'll
work it out.




