THE MAGIC OF NUMBERS

Benedict Gross • Joe Harris

CHzoter 1
Counting Numbers 3
Counting Numbers 3
Counting Divisible Number
"I've reduced it to a previously solved problem" 6
Really Bia Numbers 7
It Could Be Worse 8
chapter 2
The Mutiphation Principle IT
Choices 11
More Examples
Two Formulas 12
Two Formulas
Factorials 16
Another Wrinkle 1
Chapter 3
The Sublaction Principle 20
3.1 Back to the Video Store 20
3.2 Some More Problems 22
3.3 Multiple Subtractions 25

Chapter 4

Collections 28

4.1 Back to the House of Pizza 28
4.2 Binomial Coefficients 29
4.3 Examples 34
4.4 Multinomials 40
4.5 Something's Missing 43
$\therefore \sin a+e r 1$
Sman 2
\quad Counting Numbers 3
Counting Numbers 3
Counting Divisible Numb
Counting Divisible Numbers 5
'rve reduced it to a previously solved problem" 6 Really Big Numbers 7
It Could Be Worse 8
Chapter2
Th Mattiphection Princtple 1 ?
Choices 11
More Examples 12
Two Formulas 1
Factorials 16
Another Wrinkle 18
Chapter 3
The Subtraction Principle 20
3.1 Back to the Video Store 20
3.2 Some More Problems 22
3.3 Multiple Subtractions 25

Chapter 4
Collections 28
4.1 Back to the House of Pizza 28
4.2 Binomial Coefficients 29
4.3 Examples 34
4.4 Multinomials 40
4.5 Something's Missing 43
coapter 5
Probability 46
Flipping Coins 45
Tumbling Dice 48
Playing Poker 51
5.4 Really Playing Poker 55
55 Bridge 56
The Birthday Problem 58
Chapter 6
Fasca's iriangle and the Shomal Theoren 59

6.	Pascal's Triangle $\quad 59$	
6.3	A New Relation $\quad 60$	
6.3	More Relations	63
6.4	The Binomial Theorem	66

Chapter 7
Advanced Counting 60
7.1 Back to the Fruit Bow! 69
72 Catalan Numbers 74
73 A Recursion Relation 75
7.4 Another Interpretation 77
7.5 The Closed Formula 79
7.6 The Derivation 79
7.7 Why Do We Do These Things, Anyway?
84

PART II ARITHMETIC

Ghapter 8
Divisibilty 89
8.1 What Numbers Are Divisible by Both 4 and 6? 89
8.2 Least Common Multiples 91
8.3 Greatest Common Divisors 93

Euclid's Algorithm 94
Who Was Euclid? What's an Algorithm? 97

Cheoter 9
Combinatmen 99
Pixels, Grackis, and Pancakes 99
Combinations 100
Finding Explicit Solutions 103
Any More Questions? 105

Crapter 10
Prines 109
6. What Is a Prime? 109

02 Prime Factorization 110
\& 3 The Sieve of Eratosthenes 111
04 Some Questions 113
3. How Many Primes Are There? 114

5 Prime Deserts and Twin Primes 115
Chapter11
Factorization 117
11.? A Note About the Exercises 117
11.2 What a Prime Is, Really 118
:1.3 Binomial Coefficients Again 121
11.4 The Fundamental Theorem of Arithmetic 122

05 It's a Matter of Chemistry 123
C in a p ter 12
Consequences 126
121 Preliminaries 126
12.2 Multiplication and Division 127
12.3 How Many Numbers Divide 756? 129
12.4 gcd's and Icm's 130
12.5 Factorials Again 132
12.6 $\sqrt{2}$ Is Not a Fraction 133
12.7 The Fine Print 135

Chapter 13
Relatively Prime 138
13.1 What Does It Mean to Be Relatively Prime? 138
13.2 The Euler ϕ-function 140
13.3 Why Does this Work? 143
13.4 Odds and Ends 145

Chapter 5
Probability 46
5.1 Flipping Coins 4
5.2 Tumbling Dice 48
5.3 Playing Poker 51
5.4 Really Playing Poker
5.5 Bridge 56
5.6 The Birthday Problem

Chapter 6
Pascal's Triangle and the Binomial Theorem
6.1 Pascal's Triangle 59
6.2 A New Relation 60
6.3 More Relations 63
6.4 The Binomial Theorem

66

Chapter 7
Advanced Counting 69
7.1 Back to the Fruit Bowl 69
7.2 Catalan Numbers 74
7.3 A Recursion Relation 75
7.4 Another Interpretation 75
7.5 The Closed Formula 79
7.6 The Derivation 79
7.7 Why Do We Do The

解

PART II ARITHMETIC

Chapter 8
Divisibility 89
$\begin{array}{lll}\text { 8.1 } & \text { What Numbers Are Divisible by Both } 4 \text { and 6? } & \\ 89 \\ \text { 8.2 } & \text { Least Common Multiples } 91 & \\ \text { 8.3 } & \text { Greatest Common Divisors } 93 & \\ 8.5 & \text { Euclid's Algorithm } 94 & \end{array}$
8.5 Who Was Euclid? What'

97

Chapter 9
Combinations 99
9.1 Pixels, Grackls, and Pancakes 99
9.2 Combinations 100
9.3 Finding Explicit Solutions 103
9.4 Any More Questions? 105

Chapter 10
Primes 109
10.1 What is a Prime? 109
10.2 Prime Factorization 110
10.3 The Sieve of Eratosthenes 111
10.4 Some Questions 113
10.5 How Many Primes Are There? 114
10.6 Prime Deserts and Twin Primes 115
$C h$ a p t er 11
Factorization 117
11.1 A Note About the Exercises 117
11.2 What a Prime Is, Really 118
11.3 Binomial Coefficients Again 121
11.4 The Fundamental Theorem of Arithmetic 122
11.5 It's a Matter of Chemistry 123
$C h$ a p t er 12
Consequences 126
12.1 Preliminaries 126
12.2 Multiplication and Division 127
12.3 How Many Numbers Divide 756? 129
12.4 gcd's and Icm's 130
2.5 Factorials Again 132
$12.6 \sqrt{2}$ Is Not a Fraction 133
12.7 The Fine Print 135
$C h$ a p t er 13
Relatively Prime 138
13.1 What Does It Mean to Be Relatively Prime? 138
13.2 The Euler ϕ-function 140
13.3 Why Does this Work? 143
13.4 Odds and Ends 145

Chapter 23
Finding Primes 260
23.1 How Frequently Do Primes Occur?
23.2 Many, Many Questions 262
23.3 How Primes Are Found 263
23.4 Mathematicians and Logic 264
23.5 Is 21 a Prime? 265
23.6 Can I Get a Witness 265
23.7 It's Always Something 266
23.8 How Many Square Rots

Arithmetic? 268
23.9 The Miller Rabi

Chapter 24
Generators, Roots, and Passwords
272
24.1 Generators 273
24.2 More on Square Roots 275
24.3 Square Roots of $-1 \quad 276$
24.4 Congruence Classes of Primes 279
24.5 Counting Generators 280
24.6 "Swordfish" 281
24.7 Time to Say Goodbye

Index
285

PREFACE

The primarily purpose of the preface to a textbook is to convey a sense of the goals of the book. and to a lesser extent its level, pace and language. Since this book is based on a course, Quantitative Reasoning 28, that we developed at Harvard University, it seems reasonable to start by describing the goals of that course.

There are. it seems to us, two strains in our educational system. reflecting two disparate aims. One is preprofessional: among the courses you take in high school and in college are those that will. it's hoped, provide you with the basis of the discipline that will become your vocation in later life. The other strain. by contrast. seeks to enrich your life: to expose you to ideas and modes of thought that you might not come in contact with otherwise. This is one of the ideas underlying Harvard's Core Program, and QR28 was developed as a Core course. It's not a technical course, Core Program, and QR28 was developed as a Core course. It's not a technical course,
designed to prepare you for the next course; rather, it's simply a collection of topics that we find fascinating. and that make up a coherent whole. Our hope is that we will be able to communicate to you some idea of the mathematical view of the world, and of what attracts people to math in the first place.

Probably the best way to describe the course is by analogy: you might think of it as a math appreciation course, to be taken in the same spirit as you would a music appreciation course. We're not trying to teach you how to write a symphony, or to play the violin; we simply want you to be able to hear the music.

Or you might think of it like an introductory language course-say, Italianthat you take for fun and because it's such a beautiful language. This analogy is particularly apt in one respect. The heart of a language course is not the memorization of a lot of vocabulary and verb tenses-though there's inevitably a lot of that involved-but rather the experience of thinking and speaking in a different tongue. In the same way, in this text there are of necessity a fair number of techniques to learn and calculations to carry out, but that's just the means to an end: our goal, ultimately, is to give you the experience of thinking in math

What sort of prerequisites does this book have? Well, the technical answer to that is "virtually none": junior high school algebra will cover it handily. (To be concrete. if you can add fractions, and are reasonably comfortable with the use of letters to stand for numbers, you should be solid.) Probably more important, though, is a less quantifiable requirement: we would ask that the reader be prepared to approach the book in a spirit of adventure and exploration, and with the understanding that, while some work will be required, the experience will be worth it.

Additional exercises, prablems, and sample exams are available at www.prenhall.com/gross.

Acknowledgments

We are indebted to a great number of people for help in creating this book. Susan Milano gave us the name for the course and, by extension, the book, and also read and critiqued an early version. Sarah Brelsfoard and Debby Green also did
wonderful job of reading the first draft and pointing out mistakes. We owe a debt to Ivan Niven and his book, Mathematics of Choice, which has clearly influenced our treatment of the topics in the first part of this book. We would also like to thank the reviewers, Robert Bernhardt of East Carolina University, Fernando Gouvêa of Colby College, Steven Krantz of Washington University, and M. Terrell of Cornell University, for many helpful comments and corrections. And our editors, particularly Erin Mulligan, Bayani Mendoza de Leon, Petra Recter, and Sally Yagan, have been terrifically helpful, as has our compositor at Laserwords.

Inasmuch as this book represents a print version of the course QR28, it could not exist without the help of all those who made the course what it is. Susan Lewis, the director of the Core Program at Harvard, first encouraged us to develop a course in mathematics for this program. Then there are all the people who helped shape the course: our Head Teaching Fellows Tom Weston, Rob Pollack, Elena Mantovan and Nick Rogers; our other Teaching Fellows Sam Williams, Tomas Klenke, Stephanie Yang, Laura DeMarco, Mark Lucianovic, Sarah Dean, Robert Neel and Marty Weissman. And, of course, all the students who took the course from 1999
through 2002 .

Benedict Gross
Joe Harris

