Differential Modular Forms

Arnab Saha

Australian National University
arnab.saha@anu.edu.au

Outline

Let $X \subset X_{1}(N)$ be an open affine subscheme of the modular curve $X_{1}(N)$ over $\mathbb{Z}\left[1 / N, \zeta_{N}\right]$ and M be the ring of modular forms on X.

Outline

Let $X \subset X_{1}(N)$ be an open affine subscheme of the modular curve $X_{1}(N)$ over $\mathbb{Z}\left[1 / N, \zeta_{N}\right]$ and M be the ring of modular forms on X.
$E: M \rightarrow R((q))$ the Fourier expansion associated to a cusp.

Outline

Let $X \subset X_{1}(N)$ be an open affine subscheme of the modular curve $X_{1}(N)$ over $\mathbb{Z}\left[1 / N, \zeta_{N}\right]$ and M be the ring of modular forms on X.
$E: M \rightarrow R((q))$ the Fourier expansion associated to a cusp.
Has a rich theory of Hecke operators.

Outline

Let $X \subset X_{1}(N)$ be an open affine subscheme of the modular curve $X_{1}(N)$ over $\mathbb{Z}\left[1 / N, \zeta_{N}\right]$ and M be the ring of modular forms on X.
$E: M \rightarrow R((q))$ the Fourier expansion associated to a cusp.
Has a rich theory of Hecke operators.
Enlarge M to M^{∞} called differential modular forms.

Outline

Let $X \subset X_{1}(N)$ be an open affine subscheme of the modular curve $X_{1}(N)$ over $\mathbb{Z}\left[1 / N, \zeta_{N}\right]$ and M be the ring of modular forms on X.
$E: M \rightarrow R((q))$ the Fourier expansion associated to a cusp.
Has a rich theory of Hecke operators.
Enlarge M to M^{∞} called differential modular forms.

$$
\begin{array}{cc}
M_{A}^{\infty} \xrightarrow{E^{\infty}} S_{\text {for }}^{\infty} \\
M \xrightarrow{E} R((q))
\end{array}
$$

Various interesting examples of differential modular forms like $f^{1}, f^{\partial}, f^{\sharp} \in M^{\infty}$.

Introduction

p-derivations

Let A and B be rings. A tuple (u, δ) is called a p-derivation, where $u: A \rightarrow B$ is a ring homomorphism and $\delta: A \rightarrow B$ is a set-theoretic map satisfying
$\delta(x+y)=\delta x+\delta y+C_{p}(u(x), u(y))$
$\delta(x y)=u(x)^{p} \delta y+u(y)^{p} \delta x+p \delta x \delta y$
where $C_{p}(a, b)=\frac{a^{p}+b^{p}-(a+b)^{p}}{p}, p$ a fixed prime.

Remark. The above is equivalent to giving a ring homomorphism $A \rightarrow W_{1}(B), a \rightarrow(u(a), \delta a)$, where $W_{1}(B)$ is the ring of p-typical Witt vectors of length 2.

Introduction

p-derivations

Let A and B be rings. A tuple (u, δ) is called a p-derivation, where $u: A \rightarrow B$ is a ring homomorphism and $\delta: A \rightarrow B$ is a set-theoretic map satisfying
$\delta(x+y)=\delta x+\delta y+C_{p}(u(x), u(y))$
$\delta(x y)=u(x)^{p} \delta y+u(y)^{p} \delta x+p \delta x \delta y$
where $C_{p}(a, b)=\frac{a^{p}+b^{p}-(a+b)^{p}}{p}, p$ a fixed prime.

Remark. The above is equivalent to giving a ring homomorphism $A \rightarrow W_{1}(B), a \rightarrow(u(a), \delta a)$, where $W_{1}(B)$ is the ring of p-typical Witt vectors of length 2.

Jet Rings

Let $R=\hat{\mathbb{Z}}_{p}^{u}$. Let $A=R[\mathbf{x}] /(\mathbf{f})$ where \mathbf{x} is a tuple of variables and (\mathbf{f}) is a tuple of polynomials in $R[\mathbf{x}]$. Define the n-th jet ring as

$$
J^{n} A=\frac{R\left[\mathbf{x}, \mathbf{x}^{\prime}, \ldots, \mathbf{x}^{(n)}\right]}{\left(\mathbf{f}, \ldots, \delta^{n} \mathbf{f}\right)} \text { where } \delta x^{(n)}=x^{(n+1)}
$$

Jet Rings

Let $R=\hat{\mathbb{Z}} \hat{p}$ ur . Let $A=R[\mathbf{x}] /(\mathbf{f})$ where \mathbf{x} is a tuple of variables and (\mathbf{f}) is a tuple of polynomials in $R[\mathbf{x}]$. Define the n-th jet ring as

$$
J^{n} A=\frac{R\left[\mathbf{x}, \mathbf{x}^{\prime}, \ldots, \mathbf{x}^{(n)}\right]}{\left(\mathbf{f}, \ldots, \delta^{n} \mathbf{f}\right)} \text { where } \delta x^{(n)}=x^{(n+1)}
$$

Example

$A=R[x, y] /(x y)$ then $J^{1} A=\left(\frac{R\left[x, y, x^{\prime}, y^{\prime}\right]}{\left(x y, x^{\rho} y^{\prime}+y^{\rho} x^{\prime}+p x^{\prime} y^{\prime}\right)}\right)^{\wedge}$.

Prolongation Sequence

We define a prolongation sequence of p-adic rings as
$B^{*}=B^{0} \rightarrow \ldots B^{n} \xrightarrow{\left(u_{n}, \delta_{n}\right)} B^{n+1} \rightarrow \ldots$ where $\left(u_{n}, \delta_{n}\right)$ is a p-derivation for each n. They form a category prol with morphisms defined holding the obvious compatibility condition.

Prolongation Sequence

We define a prolongation sequence of p-adic rings as
$B^{*}=B^{0} \rightarrow \ldots B^{n} \xrightarrow{\left(u_{n}, \delta_{n}\right)} B^{n+1} \rightarrow \ldots$ where $\left(u_{n}, \delta_{n}\right)$ is a p-derivation for each n. They form a category prol with morphisms defined holding the obvious compatibility condition.

The n-th jet rings give us a prolongation sequence of rings
$J^{*} A:=\hat{A} \rightarrow \ldots J^{n} A \xrightarrow{(u, \delta)} J^{n+1} A \rightarrow \ldots$ where u and δ are induced by
$u\left(\mathbf{x}^{(n)}\right)=\mathbf{x}^{(n)}$
$\delta \mathbf{x}^{(\mathbf{n})}=\mathbf{x}^{(n+1)}$ (p-derivation)
$\phi(\mathbf{x})=\mathbf{x}^{p}+p \delta \mathbf{x}$ (lift of Frobenius)

Universal Property

Let B^{*} be a prolongation sequence. Then $\operatorname{Hom}_{\text {rings }}\left(A, B^{0}\right) \simeq \operatorname{Hom}_{\text {prol }}\left(J^{*} A, B^{*}\right)$.

Universal Property

Let B^{*} be a prolongation sequence. Then $\operatorname{Hom}_{\text {rings }}\left(A, B^{0}\right) \simeq \operatorname{Hom}_{\text {prol }}\left(J^{*} A, B^{*}\right)$.

Theorem (Borger, S)

Hom $\left(J^{n} A, B\right) \simeq \operatorname{Hom}_{\delta}\left(A, W_{n}(B)\right)$, where $W_{n}(B)$ is the ring of p-typical Witt vectors of length $n+1$.

Modular Forms

Let $p \nmid N$ and $N>3$. Recall the modular curve $Y_{1}(N)$ over Spec $\mathbb{Z}\left[1 / N, \zeta_{N}\right]$ that parametrizes elliptic curves E with level structures $i: \mu_{N} \hookrightarrow E[N]$.

Modular Forms

Let $p \nmid N$ and $N>3$. Recall the modular curve $Y_{1}(N)$ over Spec $\mathbb{Z}\left[1 / N, \zeta_{N}\right]$ that parametrizes elliptic curves E with level structures $i: \mu_{N} \hookrightarrow E[N]$.

Let $X_{1}(N)$ be the Deligne-Rapoport compactification of $Y_{1}(N)$ by adding the cusps.

Modular Forms

Let $p \nmid N$ and $N>3$. Recall the modular curve $Y_{1}(N)$ over
Spec $\mathbb{Z}\left[1 / N, \zeta_{N}\right]$ that parametrizes elliptic curves E with level structures
$i: \mu_{N} \hookrightarrow E[N]$.
Let $X_{1}(N)$ be the Deligne-Rapoport compactification of $Y_{1}(N)$ by adding the cusps.

Fix an embedding $\mathbb{Z}\left[1 / N, \zeta_{N}\right] \hookrightarrow R$ and base change $X_{1}(N)$ over R. Let $E \xrightarrow{\pi} X_{1}(N)$ be the universal elliptic curve and call $L:=\pi_{*} \Omega_{E / X_{1}(N)}$.

Differential Modular Forms

Let $X \subset X_{1}(N)$ be an open affine subscheme such that the reduction mod p, \bar{X}, has no supersingular points of $\overline{X_{1}(N)}$.

Differential Modular Forms

Let $X \subset X_{1}(N)$ be an open affine subscheme such that the reduction mod p, \bar{X}, has no supersingular points of $\overline{X_{1}(N)}$. Define the ring of modular forms $M:=\bigoplus_{n \in \mathbb{Z}} H^{0}\left(X, L^{\otimes n}\right)$.

Differential Modular Forms

Let $X \subset X_{1}(N)$ be an open affine subscheme such that the reduction mod p, \bar{X}, has no supersingular points of $\overline{X_{1}(N)}$.

Define the ring of modular forms $M:=\bigoplus_{n \in \mathbb{Z}} H^{0}\left(X, L^{\otimes n}\right)$.
Let $E: M \rightarrow R((q))$ be the Fourier expansion associated to a cusp ' ∞ '.

Differential Modular Forms

Let $X \subset X_{1}(N)$ be an open affine subscheme such that the reduction mod p, \bar{X}, has no supersingular points of $\overline{X_{1}(N)}$.

Define the ring of modular forms $M:=\bigoplus_{n \in \mathbb{Z}} H^{0}\left(X, L^{\otimes n}\right)$.
Let $E: M \rightarrow R((q))$ be the Fourier expansion associated to a cusp ' ∞ '. Consider $M^{n}:=J^{n} M$ and let $E^{n}: M^{n} \rightarrow R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge}$ be the prolongation of the Fourier expansion $E: M \rightarrow R((q))$.

Examples of δ-modular forms

(1) f^{∂} : There exists a unique form $f^{\partial} \in M^{1}(\phi-1)$ such that $E^{1}\left(f^{\partial}\right)=1$ and its reduction $\bmod p, \overline{f^{g}}$, coincides with the image of the Hasse invariant $\bar{H} \in M^{0}(p-1)$.

Examples of δ-modular forms

(1) f^{∂} : There exists a unique form $f^{\partial} \in M^{1}(\phi-1)$ such that $E^{1}\left(f^{\partial}\right)=1$ and its reduction $\bmod p, \overline{f^{\partial}}$, coincides with the image of the Hasse invariant $\bar{H} \in M^{0}(p-1)$.
(2) f^{1} : A unique form $f^{1} \in M^{1}(-1-\phi)$ such that its Fourier expansion $E^{1}\left(f^{1}\right)=\psi$ where

$$
\left.\Psi:=\frac{1}{p} \log \frac{\phi(q)}{q^{p}}=\sum_{n \geq 1}(-1)^{n-1} n^{-1} p^{n-1}\left(\frac{q^{\prime}}{q^{p}}\right)^{n} \in R((q)) \hat{[} q^{\prime}\right]
$$

Examples of δ-modular forms

(1) f^{∂} : There exists a unique form $f^{\partial} \in M^{1}(\phi-1)$ such that $E^{1}\left(f^{\partial}\right)=1$ and its reduction $\bmod p, \overline{f^{\gamma}}$, coincides with the image of the Hasse invariant $\bar{H} \in M^{0}(p-1)$.
(2) f^{1} : A unique form $f^{1} \in M^{1}(-1-\phi)$ such that its Fourier expansion $E^{1}\left(f^{1}\right)=\Psi$ where

$$
\Psi:=\frac{1}{p} \log \frac{\phi(q)}{q^{p}}=\sum_{n \geq 1}(-1)^{n-1} n^{-1} p^{n-1}\left(\frac{q^{\prime}}{q^{p}}\right)^{n} \in R((q)) \hat{)}\left[q^{\prime} \hat{]}\right.
$$

(3) f^{\sharp} : Given a classical cusp form f of weight 2 which is an eigen vector for all the Hecke operators and if $E(f)=\sum a_{n} q^{n}$, one can attach $f^{\sharp} \in M^{2}$ whose Fourier expansion is

$$
E^{2}\left(f^{\sharp}\right)=\frac{1}{p} \sum_{n \geq 1} \frac{a_{n}}{n}\left(\phi^{2}(q)^{n}-a_{p} \phi(q)^{n}+p q^{n}\right)
$$

Remark. The above series infact has integral coefficients.

Differential Modular Forms

$$
\begin{aligned}
& \text { Set } \\
& S_{\text {for }}^{\infty}:=\lim _{\rightarrow} R((q))\left[q^{\prime}, . ., q^{(n)}\right] \\
& \mathbb{S}^{\infty}=\operatorname{Im}\left(E^{\infty}: M^{\infty} \rightarrow S_{\text {for }}^{\infty}\right)
\end{aligned}
$$

Differential Modular Forms

Set
$S_{\text {for }}^{\infty}:=\lim _{\rightarrow} R((q))\left[q^{\prime}, . ., q^{(n)}\right]$
$\mathbb{S}^{\infty}=\operatorname{Im}\left(E^{\infty}: M^{\infty} \rightarrow S_{\text {for }}^{\infty}\right)$

where $\pi: S_{\text {for }}^{\infty} \rightarrow R((q))^{\wedge}$ is the ring homomorphism obtained by setting $0=\pi\left(q^{\prime}\right)=\ldots=\pi\left(q^{(n)}\right)=\ldots$.

Theorem of Swinnerton-Dyer and Serre

Theorem

The kernel of the Fourier expansion map $\bigoplus_{\kappa \geq 0} M\left(\mathbb{F}_{p}, \kappa, N\right) \rightarrow \mathbb{F}_{p}[[q]]$ is generated by $E_{p-1}-1$.

Kernel of E^{∞}

Theorem (Buium, S)

$X \subset X_{1}(N)^{\text {ord }}$ as before. Then

1) The inclusion $\mathbb{S}^{\infty} \subset S_{\text {for }}^{\infty}$ has torsion free cokernel.

Kernel of E^{∞}

Theorem (Buium, S)

$X \subset X_{1}(N)^{\text {ord }}$ as before. Then

1) The inclusion $\mathbb{S}^{\infty} \subset S_{\text {for }}^{\infty}$ has torsion free cokernel.
2) The kernel of $M^{\infty} \rightarrow S_{\text {for }}^{\infty}$ is the p-adic closure of the ideal generated by the elements

$$
f^{\partial}-1, \delta\left(f^{\partial}-1\right), \delta^{2}\left(f^{\partial}-1\right), \ldots
$$

Kernel of E^{∞}

Theorem (Buium, S)

$X \subset X_{1}(N)^{\text {ord }}$ as before. Then

1) The inclusion $\mathbb{S}^{\infty} \subset S_{f o r}^{\infty}$ has torsion free cokernel.
2) The kernel of $M^{\infty} \rightarrow S_{\text {for }}^{\infty}$ is the p-adic closure of the ideal generated by the elements

$$
f^{\partial}-1, \delta\left(f^{\partial}-1\right), \delta^{2}\left(f^{\partial}-1\right), \ldots
$$

3) The kernel of $\mathbb{S}^{\infty} \rightarrow R((q))^{\wedge}$ is the p-adic closure of the ideal generated by the images of the elements

$$
f^{1}, \delta f^{1}, \delta^{2} f^{1}, \ldots
$$

Kernel of E^{∞}

Theorem (Buium, S)

$X \subset X_{1}(N)^{\text {ord }}$ as before. Then

1) The inclusion $\mathbb{S}^{\infty} \subset S_{\text {for }}^{\infty}$ has torsion free cokernel.
2) The kernel of $M^{\infty} \rightarrow S_{\text {for }}^{\infty}$ is the p-adic closure of the ideal generated by the elements

$$
f^{\partial}-1, \delta\left(f^{\partial}-1\right), \delta^{2}\left(f^{\partial}-1\right), \ldots
$$

3) The kernel of $\mathbb{S}^{\infty} \rightarrow R((q))^{\wedge}$ is the p-adic closure of the ideal generated by the images of the elements

$$
f^{1}, \delta f^{1}, \delta^{2} f^{1}, \ldots
$$

4) The kernel of $M^{\infty} \rightarrow R((q))^{\wedge}$ is the p-adic closure of the ideal generated by the elements

$$
f^{\partial}-1, f^{1}, \delta\left(f^{\partial}-1\right), \delta f^{1}, \delta^{2}\left(f^{\partial}-1\right), \delta^{2} f^{1}, \ldots
$$

Hecke Operators away from p

Consider $f\left(q, \ldots, q^{\prime}\right) \in R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge}$.
Let $(n, p)=1$
For each integer $\kappa \in \mathbb{Z}$ the Hecke operator $f \mapsto T_{\kappa}(n) f$ on $R((q))\left[q^{\prime}, \ldots, q^{(r)}\right]^{\wedge}$ is defined as follows. For $f=f\left(q, q^{\prime}, \ldots, q^{(r)}\right)$,

$$
T_{\kappa}(n) f:=n^{\kappa-1} \sum_{A, B, D} D^{-\kappa} f\left(\zeta_{D}^{B} q^{A / D}, \delta\left(\zeta_{D}^{B} q^{A / D}\right), \ldots, \delta^{r}\left(\zeta_{D}^{B} q^{A / D}\right)\right) .
$$

where A, B, D belong to the following set

$$
\left\{(A, B, D) ; A, B, D \in \mathbb{Z}_{\geq 0}, A D=n,(A, N)=1, B<D\right\}
$$

for each $n \geq 1$ and $N \geq 4$.

Hecke Operators at p

$A:=R\left[\left[s_{1}, \ldots, s_{p}\right]\right]\left[s_{1}^{\prime}, \ldots, s_{p}^{\prime}, \ldots, s_{1}^{(r)}, \ldots, s_{p}^{(r)}\right]^{-}$
$B:=R\left[\left[q_{1}, \ldots, q_{p}\right]\right]\left[q_{1}^{\prime}, \ldots, q_{p}^{\prime}, \ldots, q_{1}^{(r)}, \ldots, q_{p}^{(r)}\right]^{\wedge}$
$A \rightarrow B$ induced by $s_{j}^{(i)} \mapsto \delta^{i} S_{j}$ where S_{i} 's are the symmetric functions.
$S_{1}=q_{1}+\ldots q_{p}, \ldots, S_{p}=q_{1} \ldots q_{p}$.

Definition

An element $G \in B$ will be called δ-symmetric if it is the image of some element $G_{(p)} \in A$ (which is then unique).
An element $f \in R[[q]]\left[q^{\prime}, \ldots, q^{(r)}\right]^{\wedge}$ will be called δ - p-symmetric if

$$
\Sigma_{p} f:=\sum_{j=1}^{p} f\left(q_{j}, \ldots, q_{j}^{(r)}\right) \in B
$$

is δ-symmetric.

Definition

For any $\delta-p$-symmetric $f \in R[[q]]\left[q^{\prime}, \ldots, q^{(r)}\right]^{\wedge}$ we define

$$
U f:=p^{-1}\left(\Sigma_{p} f\right)_{(p)}\left(0, \ldots, 0, q, \ldots, 0, \ldots, 0, q^{(r)}\right)
$$

which is an element in $p^{-1} R[[q]]\left[q^{\prime}, \ldots, q^{(r)}\right]^{\wedge}$.
For any $f \in R[[q]]\left[q^{\prime}, \ldots, q^{(r)}\right]^{\wedge}$ define

$$
V f:=f\left(q^{p}, \delta\left(q^{p}\right), \ldots, \delta^{r}\left(q^{p}\right)\right)
$$

For any $\kappa \in \mathbb{Z}$ define

$$
T_{\kappa}(p) f:=U f+p^{k-1} V f
$$

Remark. The restriction of $T_{\kappa}(p)$ on $R[[q]]$ gives us the usual "classical" Hecke operator on $R[[q]]$

$$
T_{\kappa}(p)\left(\sum a_{m} q^{m}\right)=\sum a_{p m} q^{m}+p^{\kappa-1} \sum a_{m} q^{p m}
$$

Lemma

δ-symmetry is independent of the parameter q.

That means that one can talk about δ-symmetry at a point ∞, for instance, we can define a δ-symmetric subspace in S^{r}, where $X=$ Spec S.

Theorem (Buium, S)

There is a one-to-one correspondence between the following sets of objects: i) Series in $q k[[q]]$ which are eigenvectors of all Hecke operators $T_{\kappa+2}(n)$, $T_{\kappa+2}(p),(n, p)=1$, and which are Fourier expansions of classical modular forms over k of weight $\equiv \kappa+2 \bmod p-1$;
ii) Primitive δ-series in $k[[q]]\left[q^{\prime}\right]$ which are eigenvectors of all Hecke operators $n T_{\kappa}(n)$, " $p T_{\kappa}(p)$ ", $(n, p)=1$, and which are δ-Fourier expansions of δ-modular forms of some order $r \geq 0$ and weight w with $\operatorname{deg}(w)=\kappa$.
This correspondence preserves the respective eigenvalues.
i) $\varphi=\sum_{m \geq 1} a_{m} q^{m}$ a classical modular form which is also an eigenform (means $a_{1} \neq 0$).
ii) $\varphi^{\sharp, 2}=\sum_{(n, p)=1} \frac{a_{n}}{n} q^{n}-\frac{a_{p}}{n} a_{1}\left(\sum_{m \geq 1} a_{m} q^{m p}\right) \frac{q^{\prime}}{q^{p}}+e\left(\sum_{m \geq 1} q^{m p^{2}}\right)\left(\frac{q^{\prime}}{q^{p}}\right)^{p}$ where $e=0,1$ depending on κ is 0 or ≥ 0.

References

Buium，A．，Saha，A．
Hecke operators on differential modular forms mod p ．
J．of Number Theory 132 （2012），966－997．
國 Buium，A．，Saha，A．
The ring of differential Fourier expansions．
J．of Number Theory 132 （2012），896－937．
图 Buium，A．，Saha，A．
Differential Overconvergence．
volume dedicated to Michael Singer＇s 60th birthday，Banach Center Publications
固 Saha，A．
Ph．D．Thesis．

The End

