Base rings for global (φ, Γ)-modules

Christopher Davis
Joint work with Kiran S. Kedlaya

UC Irvine davis@math.uci.edu
http://math.uci.edu/~davis

Joint Mathematics Meetings AMS Special Session
Witt Vectors, Lifting and Descent, II January 10, 2013

Kiran Kedlaya will be giving a follow-up talk.
Kedlaya's talk:

- Comparison between cohomologies using ($\varphi, \Gamma)$-modules
- Can the p-adic techniques work over \mathbb{Q} ?

This talk:

- What sort of base rings do we expect in a theory of global (φ, Γ)-modules?

Comparison theorems and "big" rings

We start with a big ring familiar to everyone.

Theorem

Let X be a smooth, proper variety over \mathbb{C}. There is a comparison isomorphism

$$
H_{s i n g}^{i}\left(X_{c l}, \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{C} \cong H_{d R}^{i}(X)
$$

between singular cohomology and algebraic de Rham cohomology.

Comparison in the p-adic setting

Now assume X is smooth and proper over \mathbb{Q}_{p}.

- Maybe $H_{\mathrm{dR}}(X) \cong H_{\mathrm{et}}^{i}\left(X_{\widehat{\mathbb{Q}_{p}}}, \mathbb{Q}_{p}\right)$?
- Maybe $H_{\mathrm{dR}}(X) \otimes_{\mathbb{Q}_{p}} \overline{\mathbb{Q}_{p}} \cong H_{\mathrm{et}}^{i}\left(X_{\overline{\mathbb{Q}_{p}}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \overline{\mathbb{Q}_{p}}$?
- Maybe $H_{\mathrm{dR}}(X) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p} \cong H_{\text {et }}^{i}\left(X_{\widehat{\mathbb{Q}_{p}}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p}$?

But in fact to get a natural comparison isomorphism, we need to tensor up to a bigger field, $B_{d R}$.

General lifting result

We're going to form our big field $B_{d R}$ by lifting \mathbb{C}_{p} to a DVR $B_{d R}^{+}$. The ring $B_{d R}$ is the fraction field of $B_{d R}^{+}$.

Proposition

Let K denote a field of characteristic zero. A complete discrete valuation ring with residue field K is isomorphic to $K[[t]]$.

Proof.

See Serre's Local Fields.

Description of $B_{d R}^{+}$:

- $B_{d R}^{+}$is a complete discrete valuation ring with residue field \mathbb{C}_{p}.
- As a ring, $B_{d R}^{+} \cong \mathbb{C}_{p}[[t]]$.
- However, it is equipped with Galois action and topology, and those are not so natural if we describe $B_{d R}^{+}$as $\mathbb{C}_{p}[[t]]$.

Characteristic p construction

A perfect ring of characteristic p arising out of \mathbb{C}_{p} :

- Start with \mathbb{C}_{p}
- Take its valuation ring $\mathcal{O}_{\mathbb{C}_{p}}$
- Mod out by $p: \mathcal{O}_{\mathbb{C}_{p}} /(p)$
- Make it perfect:

$$
\lim _{x \mapsto x^{p}} \mathcal{O}_{\mathbb{C}_{p}} /(p)
$$

- Denote this ring by \tilde{E}^{+}

The ring \tilde{E}^{+}

Lemma

The ring

$$
\tilde{E}^{+}:=\lim _{x \mapsto x^{p}} \mathcal{O}_{\mathbb{C}_{p}} /(p)
$$

is a perfect ring of characteristic p.

Proof.

- It is characteristic p : We have

$$
p(1,1,1, \ldots)=(p, p, p, \ldots)=(0,0,0, \ldots)
$$

- The map $z \mapsto z^{p}$ is surjective: If our element is $\left(z_{0}, z_{1}, z_{2}, \ldots\right)$, then $\left(z_{1}, z_{2}, z_{3}, \ldots\right)$ is its p-th root.
- The map $z \mapsto z^{p}$ is injective: If our element is $\left(z_{0}, z_{1}, z_{2}, \ldots\right)$, then its p-th power is $\left(z_{0}^{p}, z_{0}, z_{1}, \ldots\right)$. If this p-th power is zero, then our original element was zero.

We now briefly describe how to produce the ring $B_{d R}^{+}$. It is a complete discrete valuation ring with residue field \mathbb{C}_{p}.

- Begin with the perfect ring $\tilde{E}^{+}:=\lim \mathcal{O}_{\mathbb{C}_{p}} /(p)$
- Lift to $W\left(\tilde{E}^{+}\right)$
- Invert $p: W\left(\tilde{E}^{+}\right)\left[\frac{1}{p}\right]$.
- Let $\tilde{p} \in \tilde{E}^{+}$be the following element:

$$
\tilde{p}=\left(p, p^{1 / p}, p^{1 / p^{2}}, \ldots\right)
$$

- Let $\xi \in W\left(\tilde{E}^{+}\right)$be the element $[\tilde{p}]-p$
- Define $B_{d R}^{+}$to be the completion of $W\left(\tilde{E}^{+}\right)\left[\frac{1}{p}\right]$ at the principal ideal (ξ).

Alternate construction of \tilde{E}^{+}

Recall that $\tilde{E}^{+}:=\lim \mathcal{O}_{\mathbb{C}_{p}} /(p)$. Here is an alternate description:

$$
\tilde{E}^{+} \cong \lim _{x \mapsto x^{p}} \mathcal{O}_{\mathbb{C}_{p}}
$$

Note. The transition maps are multiplicative but not additive, so it takes some thought to define addition on $\lim \mathcal{O}_{\mathbb{C}_{p}}$.

- Let $K:=\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right)$
- Let L denote a finite extension of K
- Let \widehat{K} and \widehat{L} denote their p-adic completions
- To \hat{L} we associate

$$
E_{L}^{+}:=\lim _{x \mapsto x^{p}} \mathcal{O}_{\widehat{L}}
$$

which we view as a subring of $\tilde{E}^{+} \cong \lim \mathcal{O}_{\mathbb{C}_{p}}$.

- The field Frac E_{L}^{+}is called the perfect norm field associated to L.

Galois correspondence

- Let $K:=\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right)$
- For L / K finite, let

$$
E_{L}:=\operatorname{Frac}\left(\lim _{x \mapsto x^{p}} \mathcal{O}_{\widehat{L}}\right),
$$

which is a perfect field of characteristic p.

Theorem (Fontaine-Wintenberger)

If L / K is a finite extension, then E_{L} / E_{K} is also a finite extension of the same degree. If L / K is a Galois extension, then E_{L} / E_{K} is also a Galois extension, and the two Galois groups are isomorphic.

Comparisons for number fields?

Question: How much of this can we adapt to the number field setting?

Goal: avoid characteristic p.

Proposition

Let F denote the Witt vector Frobenius. We have an isomorphism

The functor \underline{W}^{\dagger}

This construction avoids characteristic p by working with inverse limits of Witt vectors, with transition maps the Witt vector Frobenius.

- Continue to let $K=\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right)$
- $W(L)$ isn't interesting when p is invertible in L, so we use overconvergent Witt vectors $W^{\dagger}(L)$
- Frobenius is more well-behaved for finite length Witt vectors. For example, $F: W_{p^{n}}(L) \rightarrow W_{p^{n-1}}(L)$ is surjective while $F: W(L) \rightarrow W(L)$ is not.
- Let $W^{\dagger}(L)$ be shorthand for a certain overconvergent subring of

$$
{\underset{F}{\lim }}_{\underset{F}{ } W_{p^{n}}(L)}
$$

Main result

Theorem

Let $K=\widehat{\mathbb{Q}\left(\mu_{p^{\infty}}\right)}$ and let L denote a finite extension of K. Then $W^{\dagger}(L)$ is a finite étale extension of $W^{\dagger}(K)$.

In fact, the same is true without completion:

Theorem

Let $K=\mathbb{Q}\left(\mu_{p^{\infty}}\right)$ and let L denote a finite extension of K. Then $W^{\dagger}(L)$ is a finite étale extension of $W^{\dagger}(K)$.

The fact that we have not p-adically completed here is key to our attempt to transition from the p-adic setting to the number field setting.

Thank you!

Thank you for your attention!
Any questions?

