Base rings for global (φ , Γ)-modules

Christopher Davis Joint work with Kiran S. Kedlaya

UC Irvine davis@math.uci.edu http://math.uci.edu/~davis

Joint Mathematics Meetings AMS Special Session Witt Vectors, Lifting and Descent, II January 10, 2013 Kiran Kedlaya will be giving a follow-up talk.

Kedlaya's talk:

- Comparison between cohomologies using (φ, Γ) -modules
- Can the *p*-adic techniques work over Q?

This talk:

 What sort of base rings do we expect in a theory of global (φ, Γ)-modules? We start with a big ring familiar to everyone.

Theorem

Let X be a smooth, proper variety over \mathbb{C} . There is a comparison isomorphism

$$H^{i}_{sing}(X_{cl},\mathbb{Z})\otimes_{\mathbb{Z}}\mathbb{C}\cong H^{i}_{dR}(X)$$

between singular cohomology and algebraic de Rham cohomology.

Now assume X is smooth and proper over \mathbb{Q}_p .

- Maybe $H_{dR}(X) \cong H^i_{\acute{e}t}(X_{\overline{\mathbb{Q}_p}}, \mathbb{Q}_p)$?
- Maybe $H_{dR}(X) \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}_p} \cong H^i_{\acute{e}t}(X_{\overline{\mathbb{Q}_p}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}_p}$?
- Maybe $H_{dR}(X) \otimes_{\mathbb{Q}_p} \mathbb{C}_p \cong H^i_{\acute{e}t}(X_{\overline{\mathbb{Q}_p}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathbb{C}_p$?

But in fact to get a natural comparison isomorphism, we need to tensor up to a bigger field, B_{dR} .

We're going to form our big field B_{dR} by lifting \mathbb{C}_p to a DVR B_{dR}^+ . The ring B_{dR} is the fraction field of B_{dR}^+ .

Proposition

Let K denote a field of characteristic zero. A complete discrete valuation ring with residue field K is isomorphic to K[[t]].

Proof.

See Serre's Local Fields.

Description of B_{dR}^+ :

- B_{dR}^+ is a complete discrete valuation ring with residue field \mathbb{C}_p .
- As a ring, $B_{dR}^+ \cong \mathbb{C}_{\rho}[[t]]$.
- However, it is equipped with Galois action and topology, and those are not so natural if we describe B⁺_{dB} as C_p[[t]].

A perfect ring of characteristic *p* arising out of \mathbb{C}_p :

- Start with \mathbb{C}_p
- Take its valuation ring $\mathcal{O}_{\mathbb{C}_p}$
- Mod out by $p: \mathcal{O}_{\mathbb{C}_p}/(p)$
- Make it perfect:

$$\lim_{x\mapsto x^p}\mathcal{O}_{\mathbb{C}_p}/(p)$$

Denote this ring by *E*⁺

The ring \tilde{E}^+

Lemma

The ring

$$\widetilde{\mathsf{E}}^+ := arprojlim_{x\mapsto x^p} \mathcal{O}_{\mathbb{C}_p}/(p)$$

is a perfect ring of characteristic p.

Proof.

- It is characteristic p: We have
 p(1, 1, 1, ...) = (p, p, p, ...) = (0, 0, 0, ...).
- The map $z \mapsto z^p$ is surjective: If our element is $(z_0, z_1, z_2, ...)$, then $(z_1, z_2, z_3, ...)$ is its *p*-th root.
- The map z → z^p is injective: If our element is (z₀, z₁, z₂, ...), then its p-th power is (z^p₀, z₀, z₁, ...). If this p-th power is zero, then our original element was zero.

The ring B_{dR}^+

We now briefly describe how to produce the ring B_{dR}^+ . It is a complete discrete valuation ring with residue field \mathbb{C}_p .

- Begin with the perfect ring $\tilde{E}^+ := \varprojlim \mathcal{O}_{\mathbb{C}_p}/(p)$
- Lift to W(˜E⁺)
- Invert p: $W(\tilde{E}^+)\left[\frac{1}{p}\right]$.
- Let $\tilde{p} \in \tilde{E}^+$ be the following element:

$$\tilde{p} = (p, p^{1/p}, p^{1/p^2}, \ldots).$$

- Let $\xi \in W(\tilde{E}^+)$ be the element $[\tilde{p}] p$
- Define B_{dR}^+ to be the completion of $W(\tilde{E}^+) \begin{bmatrix} \frac{1}{p} \end{bmatrix}$ at the principal ideal (ξ).

Recall that $\tilde{E}^+ := \lim_{n \to \infty} \mathcal{O}_{\mathbb{C}_{\rho}}/(\rho)$. Here is an alternate description:

$$\tilde{\Xi}^+ \cong \varprojlim_{x\mapsto x^p} \mathcal{O}_{\mathbb{C}_p}.$$

Note. The transition maps are multiplicative but not additive, so it takes some thought to define addition on $\lim_{n \to \infty} O_{\mathbb{C}_p}$.

Field of norms construction

• Let
$$K := \mathbb{Q}_p(\mu_{p^{\infty}})$$

- Let *L* denote a finite extension of *K*
- Let \widehat{K} and \widehat{L} denote their *p*-adic completions
- To \widehat{L} we associate

$$E_L^+ := \varprojlim_{x \mapsto x^p} \mathcal{O}_{\widehat{L}}$$

which we view as a subring of $\tilde{E}^+ \cong \lim \mathcal{O}_{\mathbb{C}_p}$.

• The field Frac E_L^+ is called the *perfect norm field* associated to *L*.

Galois correspondence

- Let $K := \mathbb{Q}_p(\mu_{p^{\infty}})$
- For L/K finite, let

$$E_L := \operatorname{Frac}\left(\varprojlim_{x\mapsto x^{
ho}} \mathcal{O}_{\widehat{L}}
ight),$$

which is a perfect field of characteristic *p*.

Theorem (Fontaine-Wintenberger)

If L/K is a finite extension, then E_L/E_K is also a finite extension of the same degree. If L/K is a Galois extension, then E_L/E_K is also a Galois extension, and the two Galois groups are isomorphic. Question: How much of this can we adapt to the number field setting?

Goal: avoid characteristic p.

Proposition

Let F denote the Witt vector Frobenius. We have an isomorphism

$$W\left(\varprojlim_{x\mapsto x^{\rho}}\mathcal{O}_{\mathbb{C}_{\rho}}\right)\cong \varprojlim_{F}W(\mathcal{O}_{\mathbb{C}_{\rho}}).$$

This construction avoids characteristic p by working with inverse limits of Witt vectors, with transition maps the Witt vector Frobenius.

- Continue to let K = Q_ρ(μ_ρ[∞])
- W(L) isn't interesting when p is invertible in L, so we use overconvergent Witt vectors W[†](L)
- Frobenius is more well-behaved for finite length Witt vectors. For example, *F* : *W*_{pⁿ}(*L*) → *W*_{pⁿ⁻¹}(*L*) is surjective while *F* : *W*(*L*) → *W*(*L*) is not.
- Let <u>W</u>[†](L) be shorthand for a certain overconvergent subring of

 $\varprojlim_{F} W_{p^n}(L)$

Theorem

Let $K = \widehat{\mathbb{Q}(\mu_{p^{\infty}})}$ and let L denote a finite extension of K. Then $\underbrace{W^{\dagger}(L)}_{}$ is a finite étale extension of $\underbrace{W^{\dagger}(K)}_{}$.

In fact, the same is true without completion:

Theorem

Let $K = \mathbb{Q}(\mu_{p^{\infty}})$ and let *L* denote a finite extension of *K*. Then $\underbrace{\mathcal{W}}^{\dagger}(L)$ is a finite étale extension of $\underbrace{\mathcal{W}}^{\dagger}(K)$.

The fact that we have not *p*-adically completed here is key to our attempt to transition from the *p*-adic setting to the number field setting.

Thank you for your attention!

Any questions?