Witt vectors and total positivity

James Borger Australian National University

> January 10, 2013 San Diego

> > ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Semirings—basic definitions

- 1. $\bm{N} = \{0, 1, 2, \dots\}$
- 2. **N**-module = commutative monoid (written additively)
- 3. **N**-algebra A = semiring = "ring without negatives"
- 4. A-modules, A-algebras, \oplus , \times , Hom, \otimes , base change,
- 5. $A \rightarrow B$. An A-model of a B-module N is an A-module M plus an isomorphism $\alpha \colon B \otimes_A M \rightarrow N$. Similarly for algebras, etc
- 6. There should be a beautiful world of algebraic geometry over **N**, combining arithmetic algebraic geometry (over **Z**) and semi-algebraic geometry (over $\mathbf{R}_{\geq 0}$).
- 7. Not many interesting theorems are known yet!
- Today: Witt vectors and lambda-rings over N and R≥0.
 Commuting Frobenius lifts Combinatorics and positivity

Big Witt and Λ for rings, the formal theory

1.
$$W(A) = \{1 + a_1t + a_2t^2 + \cdots | a_i \in A\},\$$

addition on LHS := multiplication on RHS,
multiplication on LHS determined by
 $(1 + at) * (1 + bt) = (1 + abt),$ functoriality, *t*-adic continuity

- 2. The functor W is represented by $\Lambda = \mathbf{Z}[e_1, e_2, ...], e_i \mapsto a_i$
- 3. Clarifying point of view: If we write

$$e_1 = x_1 + x_2 + \cdots, e_2 = x_1 x_2 + x_1 x_3 + \cdots, \ldots$$

then Λ = all symmetric functions in x_1, x_2, \ldots

- 4. Power sum/Adams/Frobenius symmetric functions $\psi_n = x_1^n + x_2^n + \cdots$
- 5. Buium's *p*-derivations $\delta_p = \frac{1}{p}(\psi_p \psi_1^p)$, *p* prime

The formal theory, continued

6. The ring structure on W(A) is given by change of variables

$$\Delta^+ \colon \Lambda o \Lambda \otimes \Lambda,$$

 $f(\ldots, x_i, \ldots) \mapsto f(\ldots, x_i \otimes 1, 1 \otimes x_i, \ldots)$

$$\Delta^{\times} : \Lambda \to \Lambda \otimes \Lambda,$$

 $f(\ldots, x_i, \ldots) \mapsto f(\ldots, x_i \otimes x_j, \ldots).$

7. The comonad structure on W is "plethysm", which is determined by substituting monomials in variables

$$\Lambda \times \Lambda \xrightarrow{\circ} \Lambda$$

 $f \circ (m_1 + m_2 + \cdots) = f(m_1, m_2, \dots).$

Λ_N

- So Λ is a plethory composition algebra over Z (=composition object in the category of Z-algebras), a collection of abstract operators which "knows how" to act on rings. → Λ-rings
- 2. Main point: A descends to **N** as a composition algebra.
- (Equivalently: it's possible to extend W to the category of N-algebras, not just as a functor but as a representable comonad.)
- 4. $\rightsquigarrow \Lambda_N$ -semirings
- 5. $\Lambda_{\mathbf{N}} = \{ f \in \Lambda \mid \text{the coefficient of every monomial of } f \text{ is } \geq 0 \}$
- 6. Proof: Clearly $\mathbf{Z} \otimes_{\mathbf{N}} \Lambda_{\mathbf{N}} = \Lambda$. Then observe that \times preserves $\Lambda_{\mathbf{N}}$. So do Δ^+ , Δ^{\times} , and \circ because they're given by simple changes of variables.

Witt vectors and positivity

1. For any **N**-algebra, write $W(A) = \text{Hom}(\Lambda_N, A)$ of course.

2. If A is a ring, this agrees with the usual W:

 $\operatorname{Hom}_{\mathsf{N}}(\Lambda_{\mathsf{N}}, A) = \operatorname{Hom}_{\mathsf{Z}}(\mathsf{Z} \otimes_{\mathsf{N}} \Lambda_{\mathsf{N}}, A) = \operatorname{Hom}_{\mathsf{Z}}(\Lambda, A)$

- 3. W(A) has an **N**-algebra structure induced by $\Delta^+, \Delta^{\times}$
- 4. W is a comonad: $W(A) \rightarrow W(W(A))$
- If A has additive cancellation, then W(A) is a sub-semiring of the ring of Witt vectors W(Z ⊗_N A). It is the set of series 1 + a₁t + a₂t² + ··· such that for all P(e₁, e₂, ...) ∈ Λ_N we have P(a₁, a₂, ...) ∈ A.

- 1. There is another model for Λ over **N**!
- 2. Λ_N is the N-linear span of the Z-basis of Λ consisting of the "monomial" symmetric functions

 $m_\lambda = m_{(\lambda_1,...,\lambda_l)} = x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_l^{\lambda_l} +$ all permutations (no multiplicity)

3. Now we'll do the same thing but with the basis consisting of the "Schur polynomials" s_{λ} :

$$\Lambda_{
m Sch} = igoplus_{\lambda} \mathbf{N} s_{\lambda}$$

4. What is s_{λ} ? Jacobi–Trudi formula, e.g.,

$$s_{(3,1,1,1)} = s_{(4,1,1)'} = \det \begin{pmatrix} e_4 & e_5 & e_6 \\ 1 & e_1 & e_2 \\ 0 & 1 & e_1 \end{pmatrix}$$

 $(e_0 = 1 \text{ and } e_{-1} = e_{-2} = \cdots = 0)$

5. Representation-theoretic definition: There is a standard isomorphism $\Lambda \cong \bigoplus_{n \ge 0} K(S_n)$. The Schur polynomials correspond to the irreducible representations.

$\Lambda_{\rm Sch},$ continued

- 6. Theorem: $\Lambda_{\rm Sch}$ is a model for Λ over **N** as a composition algebra, and we have $\Lambda_{\rm Sch} \subset \Lambda_{N}$.
- 7. Proof: All coefficients are \geq 0 below

 $s_{\lambda}s_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu}s_{\nu}$ Littlewood–Richardson coefficients $\Delta^+(s_\lambda) = \sum c^\lambda_{\mu
u} s_\mu \otimes s_
u$ Littlewood–Richardson coefficients $\Delta^{ imes}(s_{\lambda}) = \sum_{
u} \gamma^{\lambda}_{\mu
u} s_{\mu} \otimes s_{
u}$ Kronecker coefficients $s_\lambda \circ s_\mu = \sum_\mu a^
u_{\lambda\mu} s_
u$ a coefficients $s_{\lambda} = \sum_{\mu} K_{\lambda\mu} m_{\mu}$ Kostka numbers

8. These are standard positivity facts in combinatorics.

Total positivity

1. A series $1 + e_1t + e_2t^2 + \cdots \in W(\mathbf{R}) = 1 + t\mathbf{R}[[t]]$ is totally positive if the infinite matrix

is totally positive, i.e., all its minors are ≥ 0 .

2. Fact: $W_{\text{Sch}}(\mathbf{R}_{\geq 0})$ = the totally positive series in $1 + t\mathbf{R}[[t]]$

3. So the Schur positivity structure on *W* is part of a well-studied area.

Total positivity, continued

Theorem (Edrei–Thoma): W_{Sch}(**R**_{≥0}) consists of series of the form

$$e^{\gamma t} \frac{\prod_i (1+\alpha_i t)}{\prod_i (1-\beta_i t)},$$

where $\gamma, \alpha_i, \beta_i \geq 0$, $\sum_i \alpha_i < \infty$, $\sum_i \beta_i < \infty$.

- 5. Proof: Nevanlinna theory. Non-trivial.
- 6. This theorem + a short argument \Rightarrow $W(\mathbf{R}_{\geq 0}) = \{\text{series as above such that all } \beta_i = 0\}.$
- 7. Consequence: the Frobenius operators ψ_p on $W(\mathbf{R}_{\geq 0})$ interpolate to a continuous family ψ_s for s > 1 defined by

$$\psi_{s} \colon e^{\gamma t} \prod_{i} (1 + \alpha_{i} t) \mapsto \prod_{i} (1 + \alpha_{i}^{s} t).$$

8. ψ_s is a Frobenius flow! Could this be the holy grail?

Questions about W

- 1. "Calculate" W(A) and $W_{Sch}(A)$ for concrete N-algebras A: \mathbf{R}_{trop} , $\mathbf{N}/(n+1=n)$, etc.
- 2. E.g. Is $W_{\rm Sch}(\mathbf{N}/(1+1=1))$ countable or uncountable? (It is infinite. Ex: $\mathbf{N} \to W_{\rm Sch}(A)$ is injective $\Leftrightarrow A \neq 0$.)
- 3. If $A \to B$ is surjective, must $W_{\rm Sch}(A) \to W_{\rm Sch}(B)$ be surjective? Must $W(A) \to W(B)$?
- Is the natural map W(A) → W_{Sch}(A) always injective? (It obviously is if A has additive cancellation.)
- Let f ∈ Λ be a symmetric function at which every a ∈ W_{Sch}(R_{≥0}) ⊂ Hom(Λ, R) satisfies a(f) ≥ 0. Does it follow that f ∈ Λ_{Sch}? Same for Λ_N and W(R_{≥0}).
- 6. Is there a <u>natural</u> class of **N**-algebras A for which W(A) has a continuous Frobenius ψ_s ?
- 7. Classify the functorial additive operations on $W_{\rm Sch}$ and W. I.e., is there a Cartier theorem over **N**?

Questions about Λ

- 1. Are Λ_{N} and $\Lambda_{\rm Sch}$ the only (flat, free, \dots) N-models for $\Lambda?$
- 2. Over $\mathbf{Q}_{\geq 0}$, there is a third model for $\mathbf{Q} \otimes \Lambda$, namely $\mathbf{Q}_{\geq 0}[\dots, \psi_n, \dots]$. Is there a fourth?
- Do the algebras A_n = Z[e₁,..., e_n] representing the truncated Witt vectors have models over N (with all but the ∘ structure)?
- 4. Does the composition algebra of *p*-typical symmetric functions $\Lambda^{(p)} = \mathbf{Z}[\dots, \delta_p^{\circ n}, \dots]$ have model over **N**?
- Let K be a number field embedded in R. Does Λ_{OK} (to be defined in Lance Gurney's talk) have a model over O_K ∩ R_{≥0}? (Λ_Q = Λ, so yes if K = Q.)
- 6. Which of the familiar Λ -rings descend to **N**? I.e. which are the base change of (flat) Λ_N -semirings or Λ_{Sch} -semirings?