Witt vectors and total positivity

James Borger
Australian National University

January 10, 2013
San Diego

Semirings—basic definitions

1. $\mathbf{N}=\{0,1,2, \ldots\}$
2. \mathbf{N}-module $=$ commutative monoid (written additively)
3. \mathbf{N}-algebra $A=$ semiring $=$ "ring without negatives"
4. A-modules, A-algebras, $\oplus, \times, \mathrm{Hom}, \otimes$, base change, \ldots
5. $A \rightarrow B$. An A-model of a B-module N is an A-module M plus an isomorphism $\alpha: B \otimes_{A} M \rightarrow N$. Similarly for algebras, etc
6. There should be a beautiful world of algebraic geometry over \mathbf{N}, combining arithmetic algebraic geometry (over \mathbf{Z}) and semi-algebraic geometry (over $\mathbf{R}_{\geq 0}$).
7. Not many interesting theorems are known yet!
8. Today: Witt vectors and lambda-rings over \mathbf{N} and $\mathbf{R}_{\geq 0}$.

Commuting Frobenius lifts Combinatorics and positivity

Big Witt and \wedge for rings, the formal theory

1. $W(A)=\left\{1+a_{1} t+a_{2} t^{2}+\cdots \mid a_{i} \in A\right\}$, addition on LHS $:=$ multiplication on RHS, multiplication on LHS determined by $(1+a t) *(1+b t)=(1+a b t)$, functoriality, t-adic continuity
2. The functor W is represented by $\Lambda=\mathbf{Z}\left[e_{1}, e_{2}, \ldots\right], e_{i} \mapsto a_{i}$
3. Clarifying point of view: If we write

$$
e_{1}=x_{1}+x_{2}+\cdots, e_{2}=x_{1} x_{2}+x_{1} x_{3}+\cdots, \ldots
$$

then $\Lambda=$ all symmetric functions in x_{1}, x_{2}, \ldots
4. Power sum/Adams/Frobenius symmetric functions $\psi_{n}=x_{1}^{n}+x_{2}^{n}+\cdots$
5. Buium's p-derivations $\delta_{p}=\frac{1}{p}\left(\psi_{p}-\psi_{1}^{p}\right)$, p prime

The formal theory, continued

6. The ring structure on $W(A)$ is given by change of variables

$$
\begin{aligned}
& \Delta^{+}: \wedge \\
& \rightarrow \Lambda \otimes \Lambda, \\
& f\left(\ldots, x_{i}, \ldots\right) \mapsto f\left(\ldots, x_{i} \otimes 1,1 \otimes x_{i}, \ldots\right) \\
& \Delta^{\times}: \wedge
\end{aligned} \rightarrow \Lambda \otimes \Lambda, \quad \begin{aligned}
& \\
& f\left(\ldots, x_{i}, \ldots\right) \mapsto f\left(\ldots, x_{i} \otimes x_{j}, \ldots\right) .
\end{aligned}
$$

7. The comonad structure on W is "plethysm", which is determined by substituting monomials in variables

$$
\begin{aligned}
\Lambda \times \Lambda & \stackrel{\circ}{\longrightarrow} \Lambda \\
f \circ\left(m_{1}+m_{2}+\cdots\right) & =f\left(m_{1}, m_{2}, \ldots\right) .
\end{aligned}
$$

1. So Λ is a plethory composition algebra over \mathbf{Z} (=composition object in the category of Z-algebras), a collection of abstract operators which "knows how" to act on rings. $\rightsquigarrow \Lambda$-rings
2. Main point: Λ descends to \mathbf{N} as a composition algebra.
3. (Equivalently: it's possible to extend W to the category of \mathbf{N}-algebras, not just as a functor but as a representable comonad.)
4. $\rightsquigarrow \Lambda_{N}$-semirings
5. $\Lambda_{\mathbf{N}}=\{f \in \Lambda \mid$ the coefficient of every monomial of f is $\geq 0\}$
6. Proof: Clearly $\mathbf{Z} \otimes_{\mathbf{N}} \Lambda_{\mathbf{N}}=\Lambda$. Then observe that \times preserves Λ_{N}. So do $\Delta^{+}, \Delta^{\times}$, and o because they're given by simple changes of variables.

Witt vectors and positivity

1. For any \mathbf{N}-algebra, write $W(A)=\operatorname{Hom}\left(\Lambda_{\mathbf{N}}, A\right)$ of course.
2. If A is a ring, this agrees with the usual W :

$$
\operatorname{Hom}_{\mathbf{N}}\left(\Lambda_{\mathbf{N}}, A\right)=\operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{Z} \otimes_{\mathbf{N}} \Lambda_{\mathbf{N}}, A\right)=\operatorname{Hom}_{\mathbf{Z}}(\Lambda, A)
$$

3. $W(A)$ has an \mathbf{N}-algebra structure induced by $\Delta^{+}, \Delta^{\times}$
4. W is a comonad: $W(A) \rightarrow W(W(A))$
5. If A has additive cancellation, then $W(A)$ is a sub-semiring of the ring of Witt vectors $W\left(\mathbf{Z} \otimes_{\mathbf{N}} A\right)$. It is the set of series $1+a_{1} t+a_{2} t^{2}+\cdots$ such that for all $P\left(e_{1}, e_{2}, \ldots\right) \in \Lambda_{\mathbf{N}}$ we have $P\left(a_{1}, a_{2}, \ldots\right) \in A$.
6. There is another model for Λ over \mathbf{N} !
7. $\Lambda_{\mathbf{N}}$ is the \mathbf{N}-linear span of the \mathbf{Z}-basis of Λ consisting of the "monomial" symmetric functions

$$
m_{\lambda}=m_{\left(\lambda_{1}, \ldots, \lambda_{l}\right)}=x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{l}^{\lambda_{l}}+\text { all permutations (no multiplicity) }
$$

3. Now we'll do the same thing but with the basis consisting of the "Schur polynomials" s_{λ} :

$$
\Lambda_{\mathrm{Sch}}=\bigoplus_{\lambda} \mathbf{N} s_{\lambda}
$$

4. What is s_{λ} ? Jacobi-Trudi formula, e.g.,

$$
s_{(3,1,1,1)}=s_{(4,1,1)^{\prime}}=\operatorname{det}\left(\begin{array}{ccc}
e_{4} & e_{5} & e_{6} \\
1 & e_{1} & e_{2} \\
0 & 1 & e_{1}
\end{array}\right)
$$

($e_{0}=1$ and $\left.e_{-1}=e_{-2}=\cdots=0\right)$
5. Representation-theoretic definition: There is a standard isomorphism $\Lambda \cong \bigoplus_{n \geq 0} K\left(S_{n}\right)$. The Schur polynomials correspond to the irreducible representations.

$\Lambda_{\text {Sch }}$, continued

6. Theorem: $\Lambda_{\text {Sch }}$ is a model for Λ over \mathbf{N} as a composition algebra, and we have $\Lambda_{\text {Sch }} \subset \Lambda_{\mathbf{N}}$.
7. Proof: All coefficients are ≥ 0 below

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu} \quad \text { Littlewood-Richardson coefficients }
$$

$\Delta^{+}\left(s_{\lambda}\right)=\sum_{\nu} c_{\mu \nu}^{\lambda} s_{\mu} \otimes s_{\nu} \quad$ Littlewood-Richardson coefficients
$\Delta^{\times}\left(s_{\lambda}\right)=\sum_{\nu} \gamma_{\mu \nu}^{\lambda} s_{\mu} \otimes s_{\nu} \quad$ Kronecker coefficients

$$
s_{\lambda} \circ s_{\mu}=\sum_{\nu} a_{\lambda \mu}^{\nu} s_{\nu} \quad \text { a coefficients }
$$

$$
s_{\lambda}=\sum_{\mu} K_{\lambda \mu} m_{\mu} \quad \text { Kostka numbers }
$$

8. These are standard positivity facts in combinatorics.

Total positivity

1. A series $1+e_{1} t+e_{2} t^{2}+\cdots \in W(\mathbf{R})=1+t \mathbf{R}[[t]]$ is totally positive if the infinite matrix

$$
\left(\begin{array}{ccccc}
1 & e_{1} & e_{2} & e_{3} & \cdots \\
0 & 1 & e_{1} & e_{2} & \cdots \\
0 & 0 & 1 & e_{1} & \cdots \\
0 & 0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is totally positive, i.e., all its minors are ≥ 0.
2. Fact: $W_{\text {Sch }}\left(\mathbf{R}_{\geq 0}\right)=$ the totally positive series in $1+t \mathbf{R}[[t]]$
3. So the Schur positivity structure on W is part of a well-studied area.

Total positivity, continued

4. Theorem (Edrei-Thoma): $W_{\text {Sch }}\left(\mathbf{R}_{\geq 0}\right)$ consists of series of the form

$$
e^{\gamma t} \frac{\prod_{i}\left(1+\alpha_{i} t\right)}{\prod_{i}\left(1-\beta_{i} t\right)}
$$

where $\gamma, \alpha_{i}, \beta_{i} \geq 0, \quad \sum_{i} \alpha_{i}<\infty, \quad \sum_{i} \beta_{i}<\infty$.
5. Proof: Nevanlinna theory. Non-trivial.
6. This theorem + a short argument \Rightarrow $W\left(\mathbf{R}_{\geq 0}\right)=\left\{\right.$ series as above such that all $\left.\beta_{i}=0\right\}$.
7. Consequence: the Frobenius operators ψ_{p} on $W\left(\mathbf{R}_{\geq 0}\right)$ interpolate to a continuous family ψ_{s} for $s>1$ defined by

$$
\psi_{s}: e^{\gamma t} \prod_{i}\left(1+\alpha_{i} t\right) \mapsto \prod_{i}\left(1+\alpha_{i}^{s} t\right)
$$

8. ψ_{s} is a Frobenius flow! Could this be the holy grail?

Questions about W

1. "Calculate" $W(A)$ and $W_{\text {Sch }}(A)$ for concrete \mathbf{N}-algebras A : $\mathbf{R}_{\text {trop }}, \quad \mathbf{N} /(n+1=n), \quad$ etc.
2. E.g. Is $W_{\text {Sch }}(\mathbf{N} /(1+1=1))$ countable or uncountable? (It is infinite. Ex: $\mathbf{N} \rightarrow W_{\text {Sch }}(A)$ is injective $\Leftrightarrow A \neq 0$.)
3. If $A \rightarrow B$ is surjective, must $W_{\text {Sch }}(A) \rightarrow W_{\text {Sch }}(B)$ be surjective? Must $W(A) \rightarrow W(B)$?
4. Is the natural map $W(A) \rightarrow W_{\text {Sch }}(A)$ always injective? (It obviously is if A has additive cancellation.)
5. Let $f \in \Lambda$ be a symmetric function at which every $a \in W_{\text {Sch }}\left(\mathbf{R}_{\geq 0}\right) \subset \operatorname{Hom}(\Lambda, \mathbf{R})$ satisfies $a(f) \geq 0$. Does it follow that $f \in \Lambda_{\text {Sch }}$? Same for $\Lambda_{\mathbf{N}}$ and $W\left(\mathbf{R}_{\geq 0}\right)$.
6. Is there a natural class of \mathbf{N}-algebras A for which $W(A)$ has a continuous Frobenius ψ_{s} ?
7. Classify the functorial additive operations on $W_{\text {Sch }}$ and W. I.e., is there a Cartier theorem over \mathbf{N} ?

Questions about Λ

1. Are $\Lambda_{\mathbf{N}}$ and $\Lambda_{\text {Sch }}$ the only (flat, free, ...) \mathbf{N}-models for Λ ?
2. Over $\mathbf{Q}_{\geq 0}$, there is a third model for $\mathbf{Q} \otimes \Lambda$, namely $\mathbf{Q}_{\geq 0}\left[\ldots, \psi_{n}, \ldots\right]$. Is there a fourth?
3. Do the algebras $\Lambda_{n}=\mathbf{Z}\left[e_{1}, \ldots, e_{n}\right]$ representing the truncated Witt vectors have models over \mathbf{N} (with all but the o structure)?
4. Does the composition algebra of p-typical symmetric functions $\Lambda^{(p)}=\mathbf{Z}\left[\ldots, \delta_{p}^{\circ n}, \ldots\right]$ have model over \mathbf{N} ?
5. Let K be a number field embedded in \mathbf{R}. Does $\Lambda_{\mathcal{O}_{K}}$ (to be defined in Lance Gurney's talk) have a model over $\mathcal{O}_{K} \cap \mathbf{R}_{\geq 0}$? ($\Lambda_{\mathbf{Q}}=\Lambda$, so yes if $K=\mathbf{Q}$.)
6. Which of the familiar Λ-rings descend to \mathbf{N} ? I.e. which are the base change of (flat) Λ_{N}-semirings or $\Lambda_{\text {Sch }}$-semirings?
