Differential lifts and differential symmetries

Alexandru Buium

Department of Mathematics and Statistics University of New Mexico buium@math.unm.edu

December 10, 2012

<□ > < @ > < E > < E > E のQ @

Algebraic geometry in characteristic p

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Algebraic geometry in characteristic zero

 \uparrow "wrong" lifts

Algebraic geometry in characteristic p

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Algebraic geometry in characteristic zero

 \uparrow "wrong" lifts

Algebraic geometry in characteristic p

 \downarrow "correct" lifts

 δ -geometry (characteristic zero)

Algebraic geometry in characteristic zero

 \uparrow "wrong" lifts

Algebraic geometry in characteristic p

 \downarrow "correct" lifts

 δ -geometry (characteristic zero)

 \downarrow using lifts as central fibers

 $\delta\text{-arithmetic}$ deformation theory ?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Review of δ -geometry

Review of $\delta\text{-geometry}$

Review of $\delta\text{-symmetry}$

Review of $\delta\text{-geometry}$

Review of $\delta\text{-symmetry}$

6 examples in search of a general theory

δ

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Define
$$R = W(\mathbb{F}_p^a) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\hat{}}, \ k = R/pR = \mathbb{F}_p^a$$

δ

Define $R = W(\mathbb{F}_p^a) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\hat{}}, k = R/pR = \mathbb{F}_p^a$ where upperscript $\hat{}$ means *p*-adic completion δ

(日) (日) (日) (日) (日) (日) (日) (日)

Define $R = W(\mathbb{F}_p^a) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\hat{}}, k = R/pR = \mathbb{F}_p^a$ where upperscript $\hat{}$ means *p*-adic completion

Recall $\phi: R \to R$ unique ring homorphism with $\phi(x) \equiv x^p \mod p$

Define $R = W(\mathbb{F}_p^a) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\hat{}}, \ k = R/pR = \mathbb{F}_p^a$ where upperscript $\hat{}$ means *p*-adic completion Recall $\phi : R \to R$ unique ring homorphism with $\phi(x) \equiv x^p \mod p$ Define $\delta : R \to R, \ \delta x = \frac{\phi(x) - x^p}{p}$ Fermat quotient operator

δ

Define $R = W(\mathbb{F}_p^a) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{, k} = R/pR = \mathbb{F}_p^a$ where upperscript $\hat{}$ means p-adic completion Recall $\phi : R \to R$ unique ring homorphism with $\phi(x) \equiv x^p \mod p$ Define $\delta : R \to R, \ \delta x = \frac{\phi(x) - x^p}{p}$ Fermat quotient operator Morally R is the analogue of $C^{\infty}(\mathbb{R}) = \{x = x(t) \mod x : \mathbb{R} \to \mathbb{R}\}$

δ

Define $R = W(\mathbb{F}_p^a) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\hat{}}, \ k = R/pR = \mathbb{F}_p^a$ where upperscript $\hat{}$ means *p*-adic completion Recall $\phi : R \to R$ unique ring homorphism with $\phi(x) \equiv x^p \mod p$ Define $\delta : R \to R, \ \delta x = \frac{\phi(x) - x^p}{p}$ Fermat quotient operator Morally *R* is the analogue of $C^{\infty}(\mathbb{R}) = \{x = x(t) \mod x : \mathbb{R} \to \mathbb{R}\}$ Morally $\delta = \frac{d}{dp}$ is the analogue of $\frac{d}{dt}$

δ

Define $R = W(\mathbb{F}_p^a) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\uparrow}, k = R/pR = \mathbb{F}_p^a$ where upperscript \uparrow means *p*-adic completion Recall $\phi : R \to R$ unique ring homorphism with $\phi(x) \equiv x^p \mod p$ Define $\delta : R \to R, \ \delta x = \frac{\phi(x) - x^p}{p}$ Fermat quotient operator Morally *R* is the analogue of $C^{\infty}(\mathbb{R}) = \{x = x(t) \mod x : \mathbb{R} \to \mathbb{R}\}$ Morally $\delta = \frac{u}{dp}$ is the analogue of $\frac{d}{dt}$ Example: $p = 7; \ \delta 5 = \frac{ud5}{d7} = \frac{5-5^7}{7}$

δ

Define $R = W(\mathbb{F}_p^a) = \hat{\mathbb{Z}}_p^{ur} = \mathbb{Z}_p[\zeta_N; (N, p) = 1]^{\uparrow}, k = R/pR = \mathbb{F}_p^a$ where upperscript $^{\uparrow}$ means p-adic completion Recall $\phi : R \to R$ unique ring homorphism with $\phi(x) \equiv x^p \mod p$ Define $\delta : R \to R, \ \delta x = \frac{\phi(x) - x^p}{p}$ Fermat quotient operator Morally R is the analogue of $C^{\infty}(\mathbb{R}) = \{x = x(t) \mod x : \mathbb{R} \to \mathbb{R}\}$ Morally $\delta = \frac{d}{dp}$ is the analogue of $\frac{d}{dt}$ Example: $p = 7; \ \delta 5 = \frac{d5^n}{d7} = \frac{5 - 5^7}{7}$

More generally δ -ring: a ring A with $\delta : A \to A$ satisfying axioms of the above δ ; for A torsion free this means $\phi(x) = x^p + p\delta x$ is a ring homomorphism.

δ

For X smooth scheme over R

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1) an affine neighborhood $U \subset X$

For X smooth scheme over R

Say $f : X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^N$

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

(日) (日) (日) (日) (日) (日) (日) (日)

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^N$
- 3) a restricted power series $F \in R[T, T', ..., T^{(n)}]^{\hat{}}$ such that

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

(日) (日) (日) (日) (日) (日) (日) (日)

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^N$
- 3) a restricted power series $F \in R[T, T', ..., T^{(n)}]^{\hat{}}$ such that

$$f(x) = F(x, \delta x, ..., \delta^n x), \ x \in U(R) \subset R^N$$

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^N$

3) a restricted power series $F \in R[T, T', ..., T^{(n)}]^{\hat{}}$ such that

 $f(x) = F(x, \delta x, ..., \delta^n x), \ x \in U(R) \subset R^N$

Denote $\mathcal{O}^n(X)$ ring of δ -functions of order n, $\mathcal{O}^{\infty}(X) = \cup \mathcal{O}^n(X)$

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^N$
- 3) a restricted power series $F \in R[T, T', ..., T^{(n)}]^{\hat{}}$ such that

$$f(x) = F(x, \delta x, ..., \delta^n x), \ x \in U(R) \subset R^N$$

Denote $\mathcal{O}^n(X)$ ring of δ -functions of order n, $\mathcal{O}^{\infty}(X) = \cup \mathcal{O}^n(X)$

 δ -functions are arithmetic analogues of differential functions (Lagrangians)

For X smooth scheme over R

Say $f: X(R) \to R$ is a δ -function of order r if for any point in X(R) there exist

- 1) an affine neighborhood $U \subset X$
- 2) an embedding $U \subset \mathbb{A}^N$

3) a restricted power series $F \in R[T, T', ..., T^{(n)}]^{\hat{}}$ such that

$$f(x) = F(x, \delta x, ..., \delta^n x), \ x \in U(R) \subset R^{\Lambda}$$

Denote $\mathcal{O}^n(X)$ ring of δ -functions of order n, $\mathcal{O}^{\infty}(X) = \cup \mathcal{O}^n(X)$

 δ -functions are arithmetic analogues of differential functions (Lagrangians)

Example $f : \mathbb{A}^1(R) = R \to R$, $f(x) = \sum_{n \ge 1} p^n x^n (\delta x)^{n^3} (\delta^2 x)^{n^n}$, δ -function of order 2

 δ -Galois groups

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$\delta\text{-}\mathsf{Galois}$ groups

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 $A \subset B$ extension of torsion free δ -rings, $pB \cap A = pA$

δ -Galois groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $A \subset B$ extension of torsion free δ -rings, $pB \cap A = pA$ $\rho : Aut_{\delta}(B/A) \to Aut(\overline{B}/\overline{A}), \ \overline{A} = A/pA$, etc.

$\delta\text{-}\mathsf{Galois}$ groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $A \subset B$ extension of torsion free δ -rings, $pB \cap A = pA$
- $\rho: Aut_{\delta}(B/A) \rightarrow Aut(\overline{B}/\overline{A}), \ \overline{A} = A/pA$, etc.
- Γ a profinite group

δ -Galois groups

- $A \subset B$ extension of torsion free δ -rings, $pB \cap A = pA$
- $\rho: Aut_{\delta}(B/A) \rightarrow Aut(\overline{B}/\overline{A}), \ \overline{A} = A/pA$, etc.
- Γ a profinite group
- $A \subset B$ a $\Gamma \delta$ -extension if

$\delta\text{-}\mathsf{Galois}$ groups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $A \subset B$ extension of torsion free δ -rings, $pB \cap A = pA$
- $\rho: Aut_{\delta}(B/A) \rightarrow Aut(\overline{B}/\overline{A}), \ \overline{A} = A/pA$, etc.
- Γ a profinite group
- $A \subset B$ a $\Gamma \delta$ -extension if
- 1) $\Gamma \simeq Aut_{\delta}(B/A)$

$\delta\text{-}\mathsf{Galois}$ groups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $A \subset B$ extension of torsion free δ -rings, $pB \cap A = pA$
- $\rho: Aut_{\delta}(B/A) \rightarrow Aut(\overline{B}/\overline{A}), \ \overline{A} = A/pA$, etc.
- Γ a profinite group
- $A \subset B$ a $\Gamma \delta$ -extension if
- 1) $\Gamma \simeq Aut_{\delta}(B/A)$
- 2) ρ isomorphism
$\delta\text{-}\mathsf{Galois}$ groups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $A \subset B$ extension of torsion free δ -rings, $pB \cap A = pA$
- $\rho: Aut_{\delta}(B/A) \to Aut(\overline{B}/\overline{A}), \ \overline{A} = A/pA, \ \text{etc.}$
- Γ a profinite group
- $A \subset B$ a $\Gamma \delta$ -extension if
- 1) $\Gamma \simeq Aut_{\delta}(B/A)$
- 2) ρ isomorphism
- 3) $\overline{B}/\overline{A}$ a Γ -extension (in the usual sense)

Theorem (B, AMS book 05)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (B, AMS book 05)

Let $B = \widehat{\mathcal{O}^{\infty}(\mathbb{A}^1)}$, $u \in B$, $u^* : B \to B$, $A = u^*(B)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (B, AMS book 05)

Let $B = \widehat{\mathcal{O}^{\infty}(\mathbb{A}^1)}$, $u \in B$, $u^* : B \to B$, $A = u^*(B)$.

1. If $u = u_m = \phi(x)/x$ then B/A is a $\mathbb{Z}_p^{\times} - \delta$ -extension.

Theorem (B, AMS book 05)

Let $B = \mathcal{O}^{\infty}(\mathbb{A}^1)$, $u \in B$, $u^* : B \to B$, $A = u^*(B)$.

1. If $u = u_m = \phi(x)/x$ then B/A is a $\mathbb{Z}_p^{\times} - \delta$ -extension.

1. If $u = u_{PGL_2} = \frac{(\phi^3(x) - \phi(x))(\phi^2(x) - x)}{(\phi^3(x) - \phi^2(x))(\phi(x) - x)}$ then B/A is a $PGL_2(\mathbb{Z}_p) - \delta$ -extension.

Theorem (B, AMS book 05)

Let $B = \mathcal{O}^{\infty}(\mathbb{A}^1)$, $u \in B$, $u^* : B \to B$, $A = u^*(B)$.

1. If $u = u_m = \phi(x)/x$ then B/A is a $\mathbb{Z}_p^{\times} - \delta$ -extension.

1. If $u = u_{PGL_2} = \frac{(\phi^3(x) - \phi(x))(\phi^2(x) - x)}{(\phi^3(x) - \phi^2(x))(\phi(x) - x)}$ then B/A is a $PGL_2(\mathbb{Z}_p) - \delta$ -extension.

Remark

Theorem (B, AMS book 05)

Let $B = \widehat{\mathcal{O}^{\infty}}(\mathbb{A}^1)$, $u \in B$, $u^* : B \to B$, $A = u^*(B)$.

1. If $u = u_m = \phi(x)/x$ then B/A is a $\mathbb{Z}_p^{\times} - \delta$ -extension.

1. If $u = u_{PGL_2} = \frac{(\phi^3(x) - \phi(x))(\phi^2(x) - x)}{(\phi^3(x) - \phi^2(x))(\phi(x) - x)}$ then B/A is a $PGL_2(\mathbb{Z}_p) - \delta$ -extension.

Remark

The above are lifts to characteristic zero in δ -geometry of the obvious facts:

Theorem (B, AMS book 05)

Let $B = \mathcal{O}^{\infty}(\mathbb{A}^1)$, $u \in B$, $u^* : B \to B$, $A = u^*(B)$.

1. If $u = u_m = \phi(x)/x$ then B/A is a $\mathbb{Z}_p^{\times} - \delta$ -extension.

1. If $u = u_{PGL_2} = \frac{(\phi^3(x) - \phi(x))(\phi^2(x) - x)}{(\phi^3(x) - \phi^2(x))(\phi(x) - x)}$ then B/A is a $PGL_2(\mathbb{Z}_p) - \delta$ -extension.

Remark

The above are lifts to characteristic zero in δ -geometry of the obvious facts:

1. If $\overline{u} = x^{p-1}$ then $k(x)/k(\overline{u})$ is a \mathbb{F}_p^{\times} -extension.

Theorem (B, AMS book 05)

Let $B = \mathcal{O}^{\infty}(\mathbb{A}^1)$, $u \in B$, $u^* : B \to B$, $A = u^*(B)$.

1. If $u = u_m = \phi(x)/x$ then B/A is a $\mathbb{Z}_p^{\times} - \delta$ -extension.

1. If $u = u_{PGL_2} = \frac{(\phi^3(x) - \phi(x))(\phi^2(x) - x)}{(\phi^3(x) - \phi^2(x))(\phi(x) - x)}$ then B/A is a $PGL_2(\mathbb{Z}_p) - \delta$ -extension.

Remark

The above are lifts to characteristic zero in δ -geometry of the obvious facts:

1. If $\overline{u} = x^{p-1}$ then $k(x)/k(\overline{u})$ is a \mathbb{F}_p^{\times} -extension.

1. If
$$\overline{u} = \frac{(x^{p^3} - x^p)(x^{p^2} - x)}{(x^{p^3} - x^p)(x^{p-x})}$$
 then $k(x)/k(\overline{u})$ is a $PGL_2(\mathbb{F}_p) - \delta$ -extension.

<□ > < @ > < E > < E > E のQ @

Theorem (B, Inventiones 95)

Theorem (B, Inventiones 95)

A/R abelian scheme of dimension g. There exists linearly independent δ -functions $\psi_1, ..., \psi_g \in \mathcal{O}^2(A)$ which are group homomorphisms $A(R) \to R$.

Theorem (B, Inventiones 95)

A/R abelian scheme of dimension g. There exists linearly independent δ -functions $\psi_1, ..., \psi_g \in \mathcal{O}^2(A)$ which are group homomorphisms $A(R) \to R$.

Remark

Theorem (B, Inventiones 95)

A/R abelian scheme of dimension g. There exists linearly independent δ -functions $\psi_1, ..., \psi_g \in \mathcal{O}^2(A)$ which are group homomorphisms $A(R) \to R$.

Remark

 ψ_i an arithmetic analogue of the Manin maps $A(K) \to K$ for A/K abelian variety over a function field K

Theorem (B, Inventiones 95)

A/R abelian scheme of dimension g. There exists linearly independent δ -functions $\psi_1, ..., \psi_g \in \mathcal{O}^2(A)$ which are group homomorphisms $A(R) \to R$.

Remark

 ψ_i an arithmetic analogue of the Manin maps $A(K) \to K$ for A/K abelian variety over a function field K

Remarks

Theorem (B, Inventiones 95)

A/R abelian scheme of dimension g. There exists linearly independent δ -functions $\psi_1, ..., \psi_g \in \mathcal{O}^2(A)$ which are group homomorphisms $A(R) \to R$.

Remark

 ψ_i an arithmetic analogue of the Manin maps $A(K) \to K$ for A/K abelian variety over a function field K

Remarks

The above Theorem should be viewed as a lift to characteristic zero in δ -geometry of the fact that the first Greenberg transform $Gr^1(A)$ of A is, up to isogeny, a product of A mod p with a vector group; note the shift from 1 to 2!

Theorem (B, Inventiones 95)

A/R abelian scheme of dimension g. There exists linearly independent δ -functions $\psi_1, ..., \psi_g \in \mathcal{O}^2(A)$ which are group homomorphisms $A(R) \to R$.

Remark

 ψ_i an arithmetic analogue of the Manin maps $A(K) \to K$ for A/K abelian variety over a function field K

Remarks

The above Theorem should be viewed as a lift to characteristic zero in δ -geometry of the fact that the first Greenberg transform $Gr^1(A)$ of A is, up to isogeny, a product of A mod p with a vector group; note the shift from 1 to 2!

The homomorphism property should be viewed as an "extra-symmetry" of the function ψ

$\delta\text{-modular}$ forms

 $X \subset X_1(N)$, N > 4, X affine, disjoint from cusps and supersingular locus

$\delta\text{-modular}$ forms

 $X \subset X_1(N)$, N > 4, X affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose m-power has sections modular forms of weight m

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus *L* line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on *X* minos zero section

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on X minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order *n*

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on *X* minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order *n* $M^n(w)$ space of δ -modular forms of weight $w = \sum a_i \phi^i \in W$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on *X* minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order *n* $M^n(w)$ space of δ -modular forms of weight $w = \sum a_i \phi^i \in W$: $f(\lambda \cdot P) = \lambda^w f(P), \lambda \in R^{\times}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on X minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order *n* $M^n(w)$ space of δ -modular forms of weight $w = \sum a_i \phi^i \in W$: $f(\lambda \cdot P) = \lambda^w f(P), \lambda \in R^{\times}.$ $M^n \to R((q))[q', ..., q^{(n)}]^{\circ} \delta$ -Fourier map

 $X \subset X_1(N), N > 4, X$ affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose *m*-power has sections modular forms of weight *m* $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on *X* minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order *n* $M^n(w)$ space of δ -modular forms of weight $w = \sum a_i \phi^i \in W$: $f(\lambda \cdot P) = \lambda^w f(P), \lambda \in \mathbb{R}^{\times}$. $M^n \to R((q))[q', ..., q^{(n)}]^{\wedge} \delta$ -Fourier map (not injective but injective on each $M^n(w)$)

 $X \subset X_1(N)$, N > 4, X affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose m-power has sections modular forms of weight m $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on X minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order n $M^n(w)$ space of δ -modular forms of weight $w = \sum a_i \phi^i \in W$: $f(\lambda \cdot P) = \lambda^w f(P), \ \lambda \in R^{\times}.$ $M^n \to R((q))[q', ..., q^{(n)}]^{\wedge} \delta$ -Fourier map (not injective but injective on each $M^n(w)$) $M^{\infty} = [] M^{n}, R((q))^{\infty} = [] R((q))[q', ..., q^{(n)}]^{\wedge}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $X \subset X_1(N)$, N > 4, X affine, disjoint from cusps and supersingular locus L line bundle on $X_1(N)$ whose m-power has sections modular forms of weight m $V^* = Spec(\bigoplus_{m \in \mathbb{Z}} L_X^m)$ physical line bundle on X minos zero section $M^n = \mathcal{O}^n(V^*)$ ring of δ -modular functions of order n $M^n(w)$ space of δ -modular forms of weight $w = \sum a_i \phi^i \in W$: $f(\lambda \cdot P) = \lambda^w f(P), \ \lambda \in R^{\times}.$ $M^n \to R((q))[q', ..., q^{(n)}]^{\wedge} \delta$ -Fourier map (not injective but injective on each $M^n(w)$) $M^{\infty} = \bigcup M^n, R((q))^{\infty} = \bigcup R((q))[q', ..., q^{(n)}]^{\wedge}$ $I^{n}(w) \subset M^{n}(w)$ space of isogeny covariant forms ("Hecke semi-invariant")

$\delta\text{-symmetric series}$

A series $f \in R((q))[q', ..., q^{(n)}]^{\uparrow}$ is called $\delta - p$ -symmetric if there exists a series

A series $f \in R((q))[q', ..., q^{(n)}]^{-1}$ is called $\delta - p$ -symmetric if there exists a series $F \in R[[q_1, ..., q_p]][(q_1..., q_p)^{-1}][q'_1, ..., q'_p, ..., q_1^{(n)}, ..., q_p^{(n)}]^{-1}$ such that

A series $f \in R((q))[q', ..., q^{(n)}]^{\wedge}$ is called $\delta - p$ -symmetric if there exists a series $F \in R[[q_1, ..., q_p]][(q_1..., q_p)^{-1}][q'_1, ..., q'_p, ..., q_1^{(n)}, ..., q_p^{(n)}]^{\wedge}$ such that $f(q_1, ..., q_1^{(n)}) + ... + f(q_p, ..., q_p^{(n)}) = F(s_1, ..., s_p, ..., \delta^n(s_1), ..., \delta^n(s_p))$

A series $f \in R((q))[q', ..., q^{(n)}]^{\sim}$ is called $\delta - p$ -symmetric if there exists a series $F \in R[[q_1, ..., q_p]][(q_1...q_p)^{-1}][q'_1, ..., q'_p, ..., q_1^{(n)}, ..., q_p^{(n)}]^{\sim}$ such that $f(q_1, ..., q_1^{(n)}) + ... + f(q_p, ..., q_p^{(n)}) = F(s_1, ..., s_p, ..., \delta^n(s_1), ..., \delta^n(s_p))$ where $s_1 = \sum_i q_i, s_2 = \sum_{i < j} q_i q_j, ..., s_p = q_1...q_p$.

Example 3: f^1 and f^∂

Example 3: f^1 and f^∂

Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012)
Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012) 1. There exists $f^1 \in M^1(-1-\phi)$ with $\delta - p$ -symmetric expansion $\frac{1}{p} \log \left(1 + p \frac{q'}{q^p}\right)$

Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012) 1. There exists $f^1 \in M^1(-1-\phi)$ with $\delta - p$ -symmetric expansion $\frac{1}{p} \log \left(1 + p \frac{q'}{q^p}\right)$

2. There exists $f^{\partial} \in M^1(\phi - 1)$ with δ -Fourier expansion 1

Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012) 1. There exists $f^1 \in M^1(-1-\phi)$ with $\delta - p$ -symmetric expansion $\frac{1}{p} \log \left(1 + p \frac{q'}{q^p}\right)$

- 2. There exists $f^{\partial} \in M^1(\phi 1)$ with δ -Fourier expansion 1
- 3. f^1 and f^{∂} " δ -generate" all $I^n(w)$.

Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012)

1. There exists $f^1 \in M^1(-1-\phi)$ with $\delta - p$ -symmetric expansion $\frac{1}{p} \log \left(1 + p \frac{q'}{q^p}\right)$

- 2. There exists $f^{\partial} \in M^1(\phi 1)$ with δ -Fourier expansion 1
- 3. f^1 and f^{∂} " δ -generate" all $I^n(w)$.
- 4. $f^{\partial} 1$ " δ -generates" $Ker(M^{\infty} \rightarrow R((q))^{\infty})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012)

1. There exists $f^1 \in M^1(-1-\phi)$ with $\delta - p$ -symmetric expansion $\frac{1}{p} \log \left(1 + p \frac{q'}{q^p}\right)$

- 2. There exists $f^{\partial} \in M^1(\phi 1)$ with δ -Fourier expansion 1
- 3. f^1 and f^{∂} " δ -generate" all $I^n(w)$.
- 4. $f^{\partial} 1$ " δ -generates" $Ker(M^{\infty} \rightarrow R((q))^{\infty})$
- 5. f^1 and $f^{\partial} 1$ " δ -generate" $Ker(M^{\infty} \to R((q))^{\hat{}})$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Remarks

Remarks

1. f^1 above can be viewed as a lift to characteristic zero in δ -geometry of the Kodaira-Spencer class $\frac{2AdB-3BdA}{\Delta}$ of the universal family of elliptic curves $y^2 = x^3 + Ax + B$; the reduction mod p of f^1 is $H\frac{2AdB-3BdA}{\Delta}$ + (order zero terms) where H is the Hasse invariant.

Remarks

1. f^1 above can be viewed as a lift to characteristic zero in δ -geometry of the Kodaira-Spencer class $\frac{2AdB-3BdA}{\Delta}$ of the universal family of elliptic curves $y^2 = x^3 + Ax + B$; the reduction mod p of f^1 is $H\frac{2AdB-3BdA}{\Delta}$ + (order zero terms) where H is the Hasse invariant.

2. $f^{\partial} \mod p$ is H so f^{∂} can be viewed as a lift to characteristic zero in δ -geometry of H; the lift E_{p-1} should be viewed as a wrong lift because it is not isogeny covariant.

Remarks

1. f^1 above can be viewed as a lift to characteristic zero in δ -geometry of the Kodaira-Spencer class $\frac{2AdB-3BdA}{\Delta}$ of the universal family of elliptic curves $y^2 = x^3 + Ax + B$; the reduction mod p of f^1 is $H\frac{2AdB-3BdA}{\Delta}$ + (order zero terms) where H is the Hasse invariant.

2. $f^{\partial} \mod p$ is H so f^{∂} can be viewed as a lift to characteristic zero in δ -geometry of H; the lift E_{p-1} should be viewed as a wrong lift because it is not isogeny covariant.

3. 6 and 7 above can be viewed as lifts to characteristic zero in δ -geometry of the Serre-Swinnerton Dyer theorem on the kernel of the Fourier expansion map $\overline{M} \rightarrow k((q))$ in characteristic p.

Theorem (B+Saha: JNT 2012)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (B+Saha: JNT 2012) If $S^{\infty}_{\heartsuit} = Im(M^{\infty} \to R((q))^{\infty})$ and $S^{\infty} := \cup \mathcal{O}^{n}(X)$ then $\widehat{S^{\infty}} \subset \widehat{S^{\infty}_{\heartsuit}}$ is a $\mathbb{Z}_{p}^{\times} - \delta$ -extension

Theorem (B+Saha: JNT 2012) If $S^{\infty}_{\nabla} = Im(M^{\infty} \to R((q))^{\infty})$ and $S^{\infty} := \cup \mathcal{O}^{n}(X)$ then $\widehat{S^{\infty}} \subset \widehat{S^{\infty}_{\nabla}}$ is a $\mathbb{Z}_{p}^{\times} - \delta$ -extension

Remark

Theorem (B+Saha: JNT 2012) If $S_{\heartsuit}^{\infty} = Im(M^{\infty} \to R((q))^{\infty})$ and $S^{\infty} := \cup \mathcal{O}^{n}(X)$ then $\widehat{S^{\infty}} \subset \widehat{S_{\heartsuit}^{\infty}}$ is a $\mathbb{Z}_{\rho}^{\times} - \delta$ -extension

Remark

The theorem above can be viewed a lift to characteristic zero in δ -geometry of the fact that the Igusa curve $I_1(N)_{/\mathbb{F}_p}$ in characteristic p is a \mathbb{F}_p^{\times} -cover of the modular curve $X_1(N)_{/\mathbb{F}_p}$. $I_1(N)_{/\mathbb{F}_p}$ has another lift to characteristic zero in usual algebraic geometry; that lift is a \mathbb{F}_p^{\times} -cover of the modular curve $X_1(N)_{/\mathbb{Z}_p}$ and should be viewed as the wrong one because the symmetry group is too small

<□ > < @ > < E > < E > E のQ @

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)

If $f = \sum a_n q^n$ is a new form of weight 2 over \mathbb{Z} then the form $f^{\sharp} \in M^2(0)$ obtained by composing the Eichler-Shimura map $\Phi : X_1(N)(R) \to A_f(R)$ with the homomorphism $\psi : A_f(R) \to R$ has a δ -Fourier expansion that is $\delta - p$ -symmetric and that is congruent mod p to

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)

If $f = \sum a_n q^n$ is a new form of weight 2 over \mathbb{Z} then the form $f^{\sharp} \in M^2(0)$ obtained by composing the Eichler-Shimura map $\Phi : X_1(N)(R) \to A_f(R)$ with the homomorphism $\psi : A_f(R) \to R$ has a δ -Fourier expansion that is $\delta - p$ -symmetric and that is congruent mod p to

 $\sum_{p|h} \frac{a_n}{n} q^n - a_p \left(\sum a_m q^{mp}\right) \frac{q'}{q^p} + \left(\sum a_m q^{mp^2}\right) \left(\frac{q'}{q^p}\right)^p$

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)

If $f = \sum a_n q^n$ is a new form of weight 2 over \mathbb{Z} then the form $f^{\sharp} \in M^2(0)$ obtained by composing the Eichler-Shimura map $\Phi : X_1(N)(R) \to A_f(R)$ with the homomorphism $\psi : A_f(R) \to R$ has a δ -Fourier expansion that is $\delta - p$ -symmetric and that is congruent mod p to

 $\sum_{p \mid h} \frac{a_n}{n} q^n - a_p \left(\sum a_m q^{mp}\right) \frac{q'}{q^p} + \left(\sum a_m q^{mp^2}\right) \left(\frac{q'}{q^p}\right)^p$

Remark

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)

If $f = \sum a_n q^n$ is a new form of weight 2 over \mathbb{Z} then the form $f^{\sharp} \in M^2(0)$ obtained by composing the Eichler-Shimura map $\Phi : X_1(N)(R) \to A_f(R)$ with the homomorphism $\psi : A_f(R) \to R$ has a δ -Fourier expansion that is $\delta - p$ -symmetric and that is congruent mod p to

$$\sum_{p|h} \frac{a_n}{n} q^n - a_p \left(\sum a_m q^{mp}\right) \frac{q'}{q^p} + \left(\sum a_m q^{mp^2}\right) \left(\frac{q'}{q^p}\right)^p$$

Remark

 $\sum n^{p-2}a_nq^n$ has a remarkable lift to characteristic zero as a *p*-adic modular form a la Serre, $\sum \frac{a_n}{n}q^n$; this should be viewed as a wrong lift while f^{\sharp} above should be viewed as the "correct" lift because it has more symmetry "with respect to Heegner points"

Example 6: f^0

<□ > < @ > < E > < E > E のQ @

Example 6: f^0

 f^0 is not a $\delta-{\rm modular}$ form but rather an "Igusa $\delta-{\rm modular}$ form. It has weight 1 and $\phi(f^0)/f^0=f^\partial$

Example 6: f^0

 f^0 is not a δ -modular form but rather an "Igusa δ -modular form. It has weight 1 and $\phi(f^0)/f^0 = f^{\partial}$

 f^0 should be viewed as the "correct" lift to characteristic zero of Serre's weight one modular form mod p on the Igusa curve a; we skip this discussion; cf. B+Saha, JNT 2012

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

We saw algebro-geometric objects $\overline{\Sigma}/k$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We saw algebro-geometric objects $\overline{\Sigma}/k$

having "wrong" lifts Σ/R in algebraic geometry

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We saw algebro-geometric objects $\overline{\Sigma}/k$ having "wrong" lifts Σ/R in algebraic geometry but having "correct" lifts Σ_{δ}/R in δ -geometry

We saw algebro-geometric objects $\overline{\Sigma}/k$

having "wrong" lifts Σ/R in algebraic geometry

but having "correct" lifts \sum_{δ}/R in δ -geometry

What makes a lift "correct" versus "wrong" are certain extra " δ -symmetries" such as:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We saw algebro-geometric objects $\overline{\Sigma}/k$

having "wrong" lifts Σ/R in algebraic geometry

but having "correct" lifts \sum_{δ}/R in δ -geometry

What makes a lift "correct" versus "wrong" are certain extra " δ -symmetries" such as:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• big δ -Galois group

We saw algebro-geometric objects $\overline{\Sigma}/k$

having "wrong" lifts Σ/R in algebraic geometry

but having "correct" lifts Σ_{δ}/R in δ -geometry

What makes a lift "correct" versus "wrong" are certain extra " δ -symmetries" such as:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- big δ -Galois group
- homomorphism property

We saw algebro-geometric objects $\overline{\Sigma}/k$

having "wrong" lifts Σ/R in algebraic geometry

but having "correct" lifts Σ_{δ}/R in δ -geometry

What makes a lift "correct" versus "wrong" are certain extra " δ -symmetries" such as:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- big δ -Galois group
- homomorphism property
- δp -symmetry of series expansion

We saw algebro-geometric objects $\overline{\Sigma}/k$

having "wrong" lifts Σ/R in algebraic geometry

but having "correct" lifts Σ_{δ}/R in δ -geometry

What makes a lift "correct" versus "wrong" are certain extra " δ -symmetries" such as:

- big δ -Galois group
- homomorphism property
- δp -symmetry of series expansion
- isogeny covariance, etc.

there is evidence of connections between the above manifestations of $\delta\text{-symmetry}$ which may indicate the presence of a common concept

We saw algebro-geometric objects $\overline{\Sigma}/k$

having "wrong" lifts Σ/R in algebraic geometry

but having "correct" lifts Σ_{δ}/R in δ -geometry

What makes a lift "correct" versus "wrong" are certain extra " δ -symmetries" such as:

- big δ -Galois group
- homomorphism property
- δp -symmetry of series expansion
- isogeny covariance, etc.

there is evidence of connections between the above manifestations of $\delta\text{-symmetry}$ which may indicate the presence of a common concept

There is evidence that \sum_{δ}/k could be central fibers for deformations in a (yet to be developed) δ -arithmetic deformation theory