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)
Define R = W(F}) = Z;r =Zp[Cn; (N, p) =1]", k=R/pR =T;
where upperscript ~ means p-adic completion
Recall ¢ : R — R unique ring homorphism with ¢(x) = x” mod p
Define § : R — R, 6x = W Fermat quotient operator
Morally R is the analogue of C*°(R) = {x = x(t) smooth,x: R — R}
Morally § = “ip” is the analogue of %

d

More generally §-ring: a ring A with § : A — A satisfying axioms of the above
d; for A torsion free this means ¢(x) = x” + pdx is a ring homomorphism.
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o-functions

For X smooth scheme over R

Say f : X(R) — R is a d-function of order r if for any point in X(R) there exist
1) an affine neighborhood U C X

2) an embedding U c A"

3) a restricted power series F € R[T, T',..., T(")]“ such that

f(x) = F(x,0x,...,6"x), x € U(R) c RV

Denote O"(X) ring of d-functions of order n, O (X) = UO"(X)

O-functions are arithmetic analogues of differential functions (Lagrangians)

Example f:AY(R)=R =R, f(x) =5, p"x"(éx)"3(52x)"n, o-function of
order 2 -
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§-Galois groups
A C B extension of torsion free d-rings, pB N A = pA
p: Auts(B/A) — Aut(B/A), A= A/pA, etc.
[" a profinite group
A C B aTl — §—extension if
1) I ~ Auts(B/A)
2) p isomorphism

3) B/A a I-extension (in the usual sense)
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Example 1: upn and upgi,
Theorem (B, AMS book 05)
Let B = O=(Al), u€ B, u* : B— B, A= u*(B).
1. If u= um = ¢(x)/x then B/A'is a Z; — J—extension.
(x) Og

% then B/Ais a PGL2(Z,) — d—extension.

1. If u=upc, = ($3(x) 0? )(o(x)

Remark
The above are lifts to characteristic zero in J-geometry of the obvious facts:

1. If u = xP~" then k(x)/k() is a F} —extension.

3
1L Ifu= % then k(x)/k(t) is a PGLy(FF,) — 6—extension.
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Theorem (B, Inventiones 95)

A/R abelian scheme of dimension g. There exists linearly independent
S-functions w1, ..., 1, € O*(A) which are group homomorphisms A(R) — R.

Remark

i an arithmetic analogue of the Manin maps A(K) — K for A/K abelian
variety over a function field K

Remarks

The above Theorem should be viewed as a lift to characteristic zero in
d-geometry of the fact that the first Greenberg transform Gr'(A) of A is, up to
isogeny, a product of A mod p with a vector group; note the shift from 1 to 2!

The homomorphism property should be viewed as an “extra-symmetry” of the
function ¢
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d-modular forms

X C Xi(N), N > 4, X affine, disjoint from cusps and supersingular locus

L line bundle on Xi(N) whose m-power has sections modular forms of weight m
V" = Spec(P,,c,, LX) physical line bundle on X minos zero section

M" = O"(V*) ring of 6-modular functions of order n

M"(w) space of §-modular forms of weight w = 3" a;¢’ € W:
f(A-P)=X"f(P), A € R*.

M" — R((g)[d'; ..., q'™]" 6-Fourier map

(not injective but injective on each M"(w))

M> =UM", R((9)) = UR((a)ld, - "]

1"(w) C M"(w) space of isogeny covariant forms (“Hecke semi-invariant”)
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d-symmetric series
A series f € R((q))[d; ---, q(")]A is called 6 — p—symmetric if there exists a series
F S R[[qla seey QP]][(Ch )71][qi7 ey q,L/N () q§n)7 qﬁgn)]/\ such that

F(qry s ) 4 oo+ F(Gpy ooy @) = F(51, eony Spy oy 67(51), -, 67(55))
where 51 = Z,- qi, S2 = Zi<j qiqj, .-, Sp = q1...qp.
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Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012)
1. There exists f' € M'(—1 — ¢) with § — p—symmetric expansion

% log (1 + pg%)

2. There exists 7 € M*(¢ — 1) with §-Fourier expansion 1

3. ' and 9 “§-generate” all I"(w).

4. f9 —1 “§-generates” Ker(M> — R((q))*)

5. f' and f? — 1 “§-generate” Ker(M> — R((q))")
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Remarks

1. f1 above can be viewed as a lift to characteristic zero in 6-geometry of the
Kodaira-Spencer class w of the universal family of elliptic curves

y? = x* + Ax + B; the reduction mod p of f! is HW—{— (order zero
terms) where H is the Hasse invariant.

2. f2 mod pis H so 2 can be viewed as a lift to characteristic zero in
d-geometry of H; the lift E,—; should be viewed as a wrong lift because it is
not isogeny covariant.

3. 6 and 7 above can be viewed as lifts to characteristic zero in §—geometry of
the Serre-Swinnerton Dyer theorem on the kernel of the Fourier expansion map
M — k((q)) in characteristic p.
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Example 4: §-lgusa curve
Theorem (B+Saha: JNT 2012)
If S5 = Im(M™ — R((g))™) and S> := UO"(X) then 5= C 5 is a
Z, — é—extension
Remark
The theorem above can be viewed a lift to characteristic zero in §—geometry of
the fact that the lgusa curve h(N) g, in characteristic p is a IF; —cover of the
modular curve Xi(N)/p,. h(N),r, has another lift to characteristic zero in
usual algebraic geometry; that lift is a F;’ —cover of the modular curve

X1(N),z, and should be viewed as the wrong one because the symmetry group
is too small
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Example 5: f*

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)

If f =3 a,q" is a new form of weight 2 over Z then the form f* € M?(0)
obtained by composing the Eichler-Shimura map ¢ : X1(N)(R) — Af(R) with
the homomorphism v : A¢(R) — R has a J-Fourier expansion that is

6 — p—symmetric and that is congruent mod p to

’ > s\ P
an n I77[) (7 /77[7’ (/
S 20" = 3(X and™) % + (L ama™ ) (%)
Remark

3> nP72a,q" has a remarkable lift to characteristic zero as a p-adic modular
form a la Serre, > %"q"; this should be viewed as a wrong lift while f* above
should be viewed as the “correct” lift because it has more symmetry “with
respect to Heegner points”
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Example 6: f°

O is not a d—modular form but rather an “lgusa é-modular form. It has weight
1 and ¢(f%)/f* = f°

f° should be viewed as the “correct” lift to characteristic zero of Serre's weight
one modular form mod p on the lgusa curve a; we skip this discussion; cf.
B+Saha, JNT 2012
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In search of a unifying theory

We saw algebro-geometric objects ¥ /k
having “wrong” lifts X /R in algebraic geometry
but having “correct” lifts ¥5/R in §—geometry

What makes a lift “correct” versus “wrong” are certain extra "“0-symmetries”
such as:

there is evidence of connections between the above manifestations of
d-symmetry which may indicate the presence of a common concept

There is evidence that ¥5/k could be central fibers for deformations in a (yet
to be developed) d-arithmetic deformation theory



