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δ

Define R = W (Fa
p) = Ẑur

p = Zp[ζN ; (N, p) = 1]̂ , k = R/pR = Fa
p

where upperscript ˆ means p-adic completion

Recall φ : R → R unique ring homorphism with φ(x) ≡ xp mod p

Define δ : R → R, δx = φ(x)−xp

p
Fermat quotient operator

Morally R is the analogue of C∞(R) = {x = x(t) smooth, x : R→ R}

Morally δ = “ d
dp

” is the analogue of d
dt

Example: p = 7; δ5 = “ d5
d7

” = 5−57

7

More generally δ-ring: a ring A with δ : A→ A satisfying axioms of the above
δ; for A torsion free this means φ(x) = xp + pδx is a ring homomorphism.
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δ-functions

For X smooth scheme over R

Say f : X (R)→ R is a δ-function of order r if for any point in X (R) there exist

1) an affine neighborhood U ⊂ X

2) an embedding U ⊂ AN

3) a restricted power series F ∈ R[T ,T ′, ...,T (n) ]̂ such that

f (x) = F (x , δx , ..., δnx), x ∈ U(R) ⊂ RN

Denote On(X ) ring of δ-functions of order n, O∞(X ) = ∪On(X )

δ-functions are arithmetic analogues of differential functions (Lagrangians)

Example f : A1(R) = R → R, f (x) =
∑

n≥1 p
nxn(δx)n

3

(δ2x)n
n

, δ-function of
order 2
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δ-Galois groups

A ⊂ B extension of torsion free δ-rings, pB ∩ A = pA

ρ : Autδ(B/A)→ Aut(B/A), A = A/pA, etc.

Γ a profinite group

A ⊂ B a Γ− δ−extension if

1) Γ ' Autδ(B/A)

2) ρ isomorphism

3) B/A a Γ-extension (in the usual sense)
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Example 1: um and uPGL2

Theorem (B, AMS book 05)

Let B = Ô∞(A1), u ∈ B, u∗ : B → B, A = u∗(B).

1. If u = um = φ(x)/x then B/A is a Z×p − δ−extension.

1. If u = uPGL2 = (φ3(x)−φ(x))(φ2(x)−x)

(φ3(x)−φ2(x))(φ(x)−x)
then B/A is a PGL2(Zp)− δ−extension.

Remark

The above are lifts to characteristic zero in δ-geometry of the obvious facts:

1. If u = xp−1 then k(x)/k(u) is a F×p −extension.

1. If u = (xp
3
−xp)(xp

2
−x)

(xp
3−xp

2
)(xp−x)

then k(x)/k(u) is a PGL2(Fp)− δ−extension.



Example 1: um and uPGL2

Theorem (B, AMS book 05)
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Example 2: ψ

Theorem (B, Inventiones 95)

A/R abelian scheme of dimension g . There exists linearly independent
δ-functions ψ1, ..., ψg ∈ O2(A) which are group homomorphisms A(R)→ R.

Remark

ψi an arithmetic analogue of the Manin maps A(K)→ K for A/K abelian
variety over a function field K

Remarks

The above Theorem should be viewed as a lift to characteristic zero in
δ-geometry of the fact that the first Greenberg transform Gr 1(A) of A is, up to
isogeny, a product of A mod p with a vector group; note the shift from 1 to 2!

The homomorphism property should be viewed as an “extra-symmetry” of the
function ψ
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δ-modular forms

X ⊂ X1(N), N > 4, X affine, disjoint from cusps and supersingular locus

L line bundle on X1(N) whose m-power has sections modular forms of weight m

V ∗ = Spec(
⊕

m∈Z L
m
X ) physical line bundle on X minos zero section

Mn = On(V ∗) ring of δ-modular functions of order n

Mn(w) space of δ-modular forms of weight w =
∑

aiφ
i ∈W :

f (λ · P) = λw f (P), λ ∈ R×.

Mn → R((q))[q′, ..., q(n) ]̂ δ-Fourier map

(not injective but injective on each Mn(w))

M∞ =
⋃

Mn, R((q))∞ =
⋃

R((q))[q′, ..., q(n) ]̂

I n(w) ⊂ Mn(w) space of isogeny covariant forms (“Hecke semi-invariant”)
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δ-symmetric series

A series f ∈ R((q))[q′, ..., q(n) ]̂ is called δ−p−symmetric if there exists a series

F ∈ R[[q1, ..., qp]][(q1...qp)−1][q′1, ..., q
′
p, ..., q

(n)
1 , ..., q

(n)
p ]̂ such that

f (q1, ..., q
(n)
1 ) + ...+ f (qp, ..., q

(n)
p ) = F (s1, ..., sp, ..., δ

n(s1), ..., δn(sp))

where s1 =
∑

i qi , s2 =
∑

i<j qiqj , ..., sp = q1...qp.



δ-symmetric series

A series f ∈ R((q))[q′, ..., q(n) ]̂ is called δ−p−symmetric if there exists a series

F ∈ R[[q1, ..., qp]][(q1...qp)−1][q′1, ..., q
′
p, ..., q

(n)
1 , ..., q

(n)
p ]̂ such that

f (q1, ..., q
(n)
1 ) + ...+ f (qp, ..., q

(n)
p ) = F (s1, ..., sp, ..., δ

n(s1), ..., δn(sp))

where s1 =
∑

i qi , s2 =
∑

i<j qiqj , ..., sp = q1...qp.



δ-symmetric series

A series f ∈ R((q))[q′, ..., q(n) ]̂ is called δ−p−symmetric if there exists a series

F ∈ R[[q1, ..., qp]][(q1...qp)−1][q′1, ..., q
′
p, ..., q

(n)
1 , ..., q

(n)
p ]̂ such that

f (q1, ..., q
(n)
1 ) + ...+ f (qp, ..., q

(n)
p ) = F (s1, ..., sp, ..., δ

n(s1), ..., δn(sp))

where s1 =
∑

i qi , s2 =
∑

i<j qiqj , ..., sp = q1...qp.



δ-symmetric series

A series f ∈ R((q))[q′, ..., q(n) ]̂ is called δ−p−symmetric if there exists a series

F ∈ R[[q1, ..., qp]][(q1...qp)−1][q′1, ..., q
′
p, ..., q

(n)
1 , ..., q

(n)
p ]̂ such that

f (q1, ..., q
(n)
1 ) + ...+ f (qp, ..., q

(n)
p ) = F (s1, ..., sp, ..., δ

n(s1), ..., δn(sp))

where s1 =
∑

i qi , s2 =
∑

i<j qiqj , ..., sp = q1...qp.



δ-symmetric series

A series f ∈ R((q))[q′, ..., q(n) ]̂ is called δ−p−symmetric if there exists a series

F ∈ R[[q1, ..., qp]][(q1...qp)−1][q′1, ..., q
′
p, ..., q

(n)
1 , ..., q

(n)
p ]̂ such that

f (q1, ..., q
(n)
1 ) + ...+ f (qp, ..., q

(n)
p ) = F (s1, ..., sp, ..., δ

n(s1), ..., δn(sp))

where s1 =
∑

i qi , s2 =
∑

i<j qiqj , ..., sp = q1...qp.



Example 3: f 1 and f ∂

Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012)

1. There exists f 1 ∈ M1(−1− φ) with δ − p−symmetric expansion
1
p

log
(

1 + p q′

qp

)
2. There exists f ∂ ∈ M1(φ− 1) with δ-Fourier expansion 1

3. f 1 and f ∂ “δ-generate” all I n(w).

4. f ∂ − 1 “δ-generates” Ker(M∞ → R((q))∞)

5. f 1 and f ∂ − 1 “δ-generate” Ker(M∞ → R((q))̂ )
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Example 3, continued

Remarks

1. f 1 above can be viewed as a lift to characteristic zero in δ-geometry of the
Kodaira-Spencer class 2AdB−3BdA

∆
of the universal family of elliptic curves

y 2 = x3 + Ax + B; the reduction mod p of f 1 is H 2AdB−3BdA
∆

+ (order zero
terms) where H is the Hasse invariant.

2. f ∂ mod p is H so f ∂ can be viewed as a lift to characteristic zero in
δ-geometry of H; the lift Ep−1 should be viewed as a wrong lift because it is
not isogeny covariant.

3. 6 and 7 above can be viewed as lifts to characteristic zero in δ−geometry of
the Serre-Swinnerton Dyer theorem on the kernel of the Fourier expansion map
M → k((q)) in characteristic p.
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2. f ∂ mod p is H so f ∂ can be viewed as a lift to characteristic zero in
δ-geometry of H; the lift Ep−1 should be viewed as a wrong lift because it is
not isogeny covariant.

3. 6 and 7 above can be viewed as lifts to characteristic zero in δ−geometry of
the Serre-Swinnerton Dyer theorem on the kernel of the Fourier expansion map
M → k((q)) in characteristic p.



Example 4: δ-Igusa curve

Theorem (B+Saha: JNT 2012)

If S∞♥ = Im(M∞ → R((q))∞) and S∞ := ∪On(X ) then Ŝ∞ ⊂ Ŝ∞♥ is a

Z×p − δ−extension

Remark

The theorem above can be viewed a lift to characteristic zero in δ−geometry of
the fact that the Igusa curve I1(N)/Fp in characteristic p is a F×p −cover of the
modular curve X1(N)/Fp . I1(N)/Fp has another lift to characteristic zero in

usual algebraic geometry; that lift is a F×p −cover of the modular curve
X1(N)/Zp and should be viewed as the wrong one because the symmetry group
is too small
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Example 5: f ]

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)

If f =
∑

anq
n is a new form of weight 2 over Z then the form f ] ∈ M2(0)

obtained by composing the Eichler-Shimura map Φ : X1(N)(R)→ Af (R) with
the homomorphism ψ : Af (R)→ R has a δ-Fourier expansion that is
δ − p−symmetric and that is congruent mod p to∑

p 6|n
an
n
qn − ap(

∑
amq

mp) q′

qp
+ (
∑

amq
mp2

)
(

q′

qp

)p
Remark∑

np−2anq
n has a remarkable lift to characteristic zero as a p-adic modular

form a la Serre,
∑ an

n
qn; this should be viewed as a wrong lift while f ] above

should be viewed as the “correct” lift because it has more symmetry “with
respect to Heegner points”
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Example 6: f 0

f 0 is not a δ−modular form but rather an “Igusa δ-modular form. It has weight
1 and φ(f 0)/f 0 = f ∂

f 0 should be viewed as the “correct” lift to characteristic zero of Serre’s weight
one modular form mod p on the Igusa curve a; we skip this discussion; cf.
B+Saha, JNT 2012
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In search of a unifying theory

We saw algebro-geometric objects Σ/k

having “wrong” lifts Σ/R in algebraic geometry

but having “correct” lifts Σδ/R in δ−geometry

What makes a lift “correct” versus “wrong” are certain extra “δ-symmetries”
such as:

• big δ-Galois group

• homomorphism property

• δ − p−symmetry of series expansion

• isogeny covariance, etc.

there is evidence of connections between the above manifestations of
δ-symmetry which may indicate the presence of a common concept

There is evidence that Σδ/k could be central fibers for deformations in a (yet
to be developed) δ-arithmetic deformation theory
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