Differential lifts and differential symmetries

Alexandru Buium
Department of Mathematics and Statistics
University of New Mexico buium@math.unm.edu

December 10, 2012

Moral of talk

Moral of talk

Algebraic geometry in characteristic p

> Moral of talk

Algebraic geometry in characteristic zero
\uparrow "wrong" lifts
Algebraic geometry in characteristic p

> Moral of talk

Algebraic geometry in characteristic zero
\uparrow "wrong" lifts
Algebraic geometry in characteristic p
\downarrow "correct" lifts
δ-geometry (characteristic zero)

Moral of talk

Algebraic geometry in characteristic zero
\uparrow "wrong" lifts
Algebraic geometry in characteristic p
\downarrow "correct" lifts
δ-geometry (characteristic zero)
\downarrow using lifts as central fibers
δ-arithmetic deformation theory ?

Plan of talk

Plan of talk

Review of δ-geometry

Plan of talk

Review of δ-geometry
Review of δ-symmetry

Plan of talk

Review of δ-geometry
Review of δ-symmetry
6 examples in search of a general theory

Define $R=W\left(\mathbb{F}_{p}^{a}\right)=\hat{\mathbb{Z}}_{\rho}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}, k=R / p R=\mathbb{F}_{p}^{a}$

Define $R=W\left(\mathbb{F}_{p}^{a}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}, k=R / p R=\mathbb{F}_{p}^{a}$
where upperscript ${ }^{\wedge}$ means p-adic completion

Define $R=W\left(\mathbb{F}_{p}^{a}\right)=\hat{\mathbb{Z}}_{\rho}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}, k=R / p R=\mathbb{F}_{p}^{a}$
where upperscript ${ }^{\wedge}$ means p-adic completion
Recall $\phi: R \rightarrow R$ unique ring homorphism with $\phi(x) \equiv x^{p} \bmod p$

Define $R=W\left(\mathbb{F}_{p}^{a}\right)=\hat{\mathbb{Z}}_{\rho}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}, k=R / p R=\mathbb{F}_{p}^{a}$
where upperscript ${ }^{\wedge}$ means p-adic completion
Recall $\phi: R \rightarrow R$ unique ring homorphism with $\phi(x) \equiv x^{p} \bmod p$
Define $\delta: R \rightarrow R, \delta x=\frac{\phi(x)-x^{p}}{\rho}$ Fermat quotient operator

Define $R=W\left(\mathbb{F}_{p}^{a}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}, k=R / p R=\mathbb{F}_{p}^{a}$
where upperscript ${ }^{\wedge}$ means p-adic completion
Recall $\phi: R \rightarrow R$ unique ring homorphism with $\phi(x) \equiv x^{p} \bmod p$
Define $\delta: R \rightarrow R, \delta x=\frac{\phi(x)-x^{p}}{p}$ Fermat quotient operator
Morally R is the analogue of $C^{\infty}(\mathbb{R})=\{x=x(t)$ smooth, $x: \mathbb{R} \rightarrow \mathbb{R}\}$

Define $R=W\left(\mathbb{F}_{p}^{a}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}, k=R / p R=\mathbb{F}_{p}^{a}$
where upperscript ${ }^{\wedge}$ means p-adic completion
Recall $\phi: R \rightarrow R$ unique ring homorphism with $\phi(x) \equiv x^{p} \bmod p$
Define $\delta: R \rightarrow R, \delta x=\frac{\phi(x)-x^{p}}{p}$ Fermat quotient operator
Morally R is the analogue of $C^{\infty}(\mathbb{R})=\{x=x(t)$ smooth, $x: \mathbb{R} \rightarrow \mathbb{R}\}$
Morally $\delta=" \frac{d}{d p} "$ is the analogue of $\frac{d}{d t}$

Define $R=W\left(\mathbb{F}_{p}^{a}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}, k=R / p R=\mathbb{F}_{p}^{a}$
where upperscript ^ means p-adic completion
Recall $\phi: R \rightarrow R$ unique ring homorphism with $\phi(x) \equiv x^{p} \bmod p$
Define $\delta: R \rightarrow R, \delta x=\frac{\phi(x)-x^{p}}{p}$ Fermat quotient operator
Morally R is the analogue of $C^{\infty}(\mathbb{R})=\{x=x(t)$ smooth, $x: \mathbb{R} \rightarrow \mathbb{R}\}$
Morally $\delta=$ " $\frac{d}{d p}$ " is the analogue of $\frac{d}{d t}$
Example: $p=7 ; \delta 5=" \frac{d 5}{d 7}{ }^{\prime \prime}=\frac{5-5^{7}}{7}$

Define $R=W\left(\mathbb{F}_{p}^{a}\right)=\hat{\mathbb{Z}}_{p}^{u r}=\mathbb{Z}_{p}\left[\zeta_{N} ;(N, p)=1\right]^{\wedge}, k=R / p R=\mathbb{F}_{p}^{a}$
where upperscript ^ means p-adic completion
Recall $\phi: R \rightarrow R$ unique ring homorphism with $\phi(x) \equiv x^{p} \bmod p$
Define $\delta: R \rightarrow R, \delta x=\frac{\phi(x)-x^{p}}{p}$ Fermat quotient operator
Morally R is the analogue of $C^{\infty}(\mathbb{R})=\{x=x(t)$ smooth, $x: \mathbb{R} \rightarrow \mathbb{R}\}$
Morally $\delta=$ " $\frac{d}{d p}$ " is the analogue of $\frac{d}{d t}$
Example: $p=7 ; \delta 5=" \frac{d 5 "}{d 7}=\frac{5-5^{7}}{7}$
More generally δ-ring: a ring A with $\delta: A \rightarrow A$ satisfying axioms of the above δ; for A torsion free this means $\phi(x)=x^{p}+p \delta x$ is a ring homomorphism.

δ-functions

δ-functions

For X smooth scheme over R

```
\delta-functions
```

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

```
\delta-functions
```

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
```
\delta-functions
```

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{N}$

δ-functions

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{N}$
3) a restricted power series $F \in R\left[T, T^{\prime}, \ldots, T^{(n)}\right]^{\wedge}$ such that

δ-functions

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{N}$
3) a restricted power series $F \in R\left[T, T^{\prime}, \ldots, T^{(n)}\right]^{\wedge}$ such that $f(x)=F\left(x, \delta x, \ldots, \delta^{n} x\right), \quad x \in U(R) \subset R^{N}$

δ-functions

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{N}$
3) a restricted power series $F \in R\left[T, T^{\prime}, \ldots, T^{(n)}\right]^{\wedge}$ such that $f(x)=F\left(x, \delta x, \ldots, \delta^{n} x\right), \quad x \in U(R) \subset R^{N}$

Denote $\mathcal{O}^{n}(X)$ ring of δ-functions of order $n, \mathcal{O}^{\infty}(X)=\cup \mathcal{O}^{n}(X)$

```
\delta-functions
```

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{N}$
3) a restricted power series $F \in R\left[T, T^{\prime}, \ldots, T^{(n)}\right]^{\wedge}$ such that $f(x)=F\left(x, \delta x, \ldots, \delta^{n} x\right), \quad x \in U(R) \subset R^{N}$

Denote $\mathcal{O}^{n}(X)$ ring of δ-functions of order $n, \mathcal{O}^{\infty}(X)=\cup \mathcal{O}^{n}(X)$
δ-functions are arithmetic analogues of differential functions (Lagrangians)

δ-functions

For X smooth scheme over R
Say $f: X(R) \rightarrow R$ is a δ-function of order r if for any point in $X(R)$ there exist

1) an affine neighborhood $U \subset X$
2) an embedding $U \subset \mathbb{A}^{N}$
3) a restricted power series $F \in R\left[T, T^{\prime}, \ldots, T^{(n)}\right]^{\wedge}$ such that $f(x)=F\left(x, \delta x, \ldots, \delta^{n} x\right), \quad x \in U(R) \subset R^{N}$

Denote $\mathcal{O}^{n}(X)$ ring of δ-functions of order $n, \mathcal{O}^{\infty}(X)=\cup \mathcal{O}^{n}(X)$
δ-functions are arithmetic analogues of differential functions (Lagrangians)
Example $f: \mathbb{A}^{1}(R)=R \rightarrow R, f(x)=\sum_{n \geq 1} p^{n} x^{n}(\delta x)^{n^{3}}\left(\delta^{2} x\right)^{n^{n}}, \delta$-function of order 2

δ-Galois groups

δ-Galois groups

$A \subset B$ extension of torsion free δ-rings, $p B \cap A=p A$

δ-Galois groups

$A \subset B$ extension of torsion free δ-rings, $p B \cap A=p A$ $\rho: \operatorname{Aut}_{\delta}(B / A) \rightarrow \operatorname{Aut}(\bar{B} / \bar{A}), \bar{A}=A / p A$, etc.

δ-Galois groups

$A \subset B$ extension of torsion free δ-rings, $p B \cap A=p A$ $\rho: \operatorname{Aut}_{\delta}(B / A) \rightarrow \operatorname{Aut}(\bar{B} / \bar{A}), \bar{A}=A / p A$, etc.
Γ a profinite group

δ-Galois groups

$A \subset B$ extension of torsion free δ-rings, $p B \cap A=p A$ $\rho: \operatorname{Aut}_{\delta}(B / A) \rightarrow \operatorname{Aut}(\bar{B} / \bar{A}), \bar{A}=A / p A$, etc.
Γ a profinite group
$A \subset B a \Gamma-\delta$-extension if

δ-Galois groups

$A \subset B$ extension of torsion free δ-rings, $p B \cap A=p A$ $\rho: \operatorname{Aut}_{\delta}(B / A) \rightarrow \operatorname{Aut}(\bar{B} / \bar{A}), \bar{A}=A / p A$, etc.
Γ a profinite group
$A \subset B a \Gamma-\delta$-extension if

1) $\Gamma \simeq \operatorname{Aut}_{\delta}(B / A)$

δ-Galois groups

$A \subset B$ extension of torsion free δ-rings, $p B \cap A=p A$
$\rho: \operatorname{Aut}_{\delta}(B / A) \rightarrow \operatorname{Aut}(\bar{B} / \bar{A}), \bar{A}=A / p A$, etc.
Γ a profinite group
$A \subset B a \Gamma-\delta$-extension if

1) $\Gamma \simeq \operatorname{Aut}_{\delta}(B / A)$
2) ρ isomorphism

δ-Galois groups

$A \subset B$ extension of torsion free δ-rings, $p B \cap A=p A$ $\rho: \operatorname{Aut}_{\delta}(B / A) \rightarrow \operatorname{Aut}(\bar{B} / \bar{A}), \bar{A}=A / p A$, etc.
Γ a profinite group
$A \subset B a \Gamma-\delta$-extension if

1) $\Gamma \simeq \operatorname{Aut}_{\delta}(B / A)$
2) ρ isomorphism
3) \bar{B} / \bar{A} a Γ-extension (in the usual sense)

Example 1: u_{m} and $u_{P G L_{2}}$

Example 1: u_{m} and $u_{P G L_{2}}$
Theorem (B, AMS book 05)

Example 1: u_{m} and $u_{P G L_{2}}$
Theorem (B, AMS book 05)
Let $B=\widehat{\mathcal{O}^{\infty}\left(\mathbb{A}^{1}\right)}, u \in B, u^{*}: B \rightarrow B, A=u^{*}(B)$.

Example 1: u_{m} and $u_{P G L_{2}}$

Theorem (B, AMS book 05)

1. If $u=u_{m}=\phi(x) / x$ then B / A is a $\mathbb{Z}_{p}^{\times}-\delta$-extension.

Example 1: u_{m} and $u_{P G L_{2}}$

Theorem (B, AMS book 05)

1. If $u=u_{m}=\phi(x) / x$ then B / A is a $\mathbb{Z}_{p}^{\times}-\delta$-extension.
2. If $u=u_{P G L_{2}}=\frac{\left(\phi^{3}(x)-\phi(x)\right)\left(\phi^{2}(x)-x\right)}{\left(\phi^{3}(x)-\phi^{2}(x)\right)(\phi(x)-x)}$ then B / A is a $P G L_{2}\left(\mathbb{Z}_{p}\right)-\delta$-extension.

Example 1: u_{m} and $u_{P G L_{2}}$

Theorem (B, AMS book 05)

1. If $u=u_{m}=\phi(x) / x$ then B / A is a $\mathbb{Z}_{p}^{\times}-\delta$-extension.
2. If $u=u_{P G L_{2}}=\frac{\left(\phi^{3}(x)-\phi(x)\right)\left(\phi^{2}(x)-x\right)}{\left(\phi^{3}(x)-\phi^{2}(x)\right)(\phi(x)-x)}$ then B / A is a $P G L_{2}\left(\mathbb{Z}_{p}\right)-\delta$-extension.

Remark

Example 1: u_{m} and $u_{P G L_{2}}$

Theorem (B, AMS book 05)

1. If $u=u_{m}=\phi(x) / x$ then B / A is a $\mathbb{Z}_{p}^{\times}-\delta$-extension.
2. If $u=u_{P G L_{2}}=\frac{\left(\phi^{3}(x)-\phi(x)\right)\left(\phi^{2}(x)-x\right)}{\left(\phi^{3}(x)-\phi^{2}(x)\right)(\phi(x)-x)}$ then B / A is a $P G L_{2}\left(\mathbb{Z}_{p}\right)-\delta$-extension.

Remark
The above are lifts to characteristic zero in δ-geometry of the obvious facts:

Example 1: u_{m} and $u_{P G L_{2}}$

Theorem (B, AMS book 05)

1. If $u=u_{m}=\phi(x) / x$ then B / A is a $\mathbb{Z}_{p}^{\times}-\delta$-extension.
2. If $u=u_{P G L_{2}}=\frac{\left(\phi^{3}(x)-\phi(x)\right)\left(\phi^{2}(x)-x\right)}{\left(\phi^{3}(x)-\phi^{2}(x)\right)(\phi(x)-x)}$ then B / A is a $P G L_{2}\left(\mathbb{Z}_{p}\right)-\delta$-extension.

Remark
The above are lifts to characteristic zero in δ-geometry of the obvious facts:

1. If $\bar{u}=x^{p-1}$ then $k(x) / k(\bar{u})$ is a \mathbb{F}_{p}^{\times}-extension.

Example 1: u_{m} and $u_{P G L_{2}}$

Theorem (B, AMS book 05)

1. If $u=u_{m}=\phi(x) / x$ then B / A is a $\mathbb{Z}_{p}^{\times}-\delta$-extension.
2. If $u=u_{P G L_{2}}=\frac{\left(\phi^{3}(x)-\phi(x)\right)\left(\phi^{2}(x)-x\right)}{\left(\phi^{3}(x)-\phi^{2}(x)\right)(\phi(x)-x)}$ then B / A is a $P G L_{2}\left(\mathbb{Z}_{p}\right)-\delta$-extension.

Remark
The above are lifts to characteristic zero in δ-geometry of the obvious facts:

1. If $\bar{u}=x^{p-1}$ then $k(x) / k(\bar{u})$ is a \mathbb{F}_{p}^{\times}-extension.
2. If $\bar{u}=\frac{\left(x^{p^{3}}-x^{p}\right)\left(x^{p^{2}}-x\right)}{\left(x^{p^{3}}-x^{p^{2}}\right)\left(x^{p}-x\right)}$ then $k(x) / k(\bar{u})$ is a $P G L_{2}\left(\mathbb{F}_{p}\right)-\delta$-extension.

Example 2: ψ

Example 2: ψ

Theorem (B, Inventiones 95)

Example 2: ψ

Theorem (B, Inventiones 95)
A / R abelian scheme of dimension g. There exists linearly independent δ-functions $\psi_{1}, \ldots, \psi_{g} \in \mathcal{O}^{2}(A)$ which are group homomorphisms $A(R) \rightarrow R$.

Example 2: ψ

Theorem (B, Inventiones 95)
A / R abelian scheme of dimension g. There exists linearly independent δ-functions $\psi_{1}, \ldots, \psi_{g} \in \mathcal{O}^{2}(A)$ which are group homomorphisms $A(R) \rightarrow R$.

Remark

Example 2: ψ

Theorem (B, Inventiones 95)
A / R abelian scheme of dimension g. There exists linearly independent δ-functions $\psi_{1}, \ldots, \psi_{g} \in \mathcal{O}^{2}(A)$ which are group homomorphisms $A(R) \rightarrow R$.

Remark

ψ_{i} an arithmetic analogue of the Manin maps $A(K) \rightarrow K$ for A / K abelian variety over a function field K

Example 2: ψ

Theorem (B, Inventiones 95)
A / R abelian scheme of dimension g. There exists linearly independent δ-functions $\psi_{1}, \ldots, \psi_{g} \in \mathcal{O}^{2}(A)$ which are group homomorphisms $A(R) \rightarrow R$.

Remark

ψ_{i} an arithmetic analogue of the Manin maps $A(K) \rightarrow K$ for A / K abelian variety over a function field K

Remarks

Example 2: ψ

Theorem (B, Inventiones 95)
A / R abelian scheme of dimension g. There exists linearly independent δ-functions $\psi_{1}, \ldots, \psi_{g} \in \mathcal{O}^{2}(A)$ which are group homomorphisms $A(R) \rightarrow R$.

Remark

ψ_{i} an arithmetic analogue of the Manin maps $A(K) \rightarrow K$ for A / K abelian variety over a function field K

Remarks
The above Theorem should be viewed as a lift to characteristic zero in δ-geometry of the fact that the first Greenberg transform $\operatorname{Gr}^{1}(A)$ of A is, up to isogeny, a product of $A \bmod p$ with a vector group; note the shift from 1 to 2 !

Example 2: ψ

Theorem (B, Inventiones 95)
A / R abelian scheme of dimension g. There exists linearly independent δ-functions $\psi_{1}, \ldots, \psi_{g} \in \mathcal{O}^{2}(A)$ which are group homomorphisms $A(R) \rightarrow R$.

Remark

ψ_{i} an arithmetic analogue of the Manin maps $A(K) \rightarrow K$ for A / K abelian variety over a function field K

Remarks
The above Theorem should be viewed as a lift to characteristic zero in δ-geometry of the fact that the first Greenberg transform $\operatorname{Gr}^{1}(A)$ of A is, up to isogeny, a product of $A \bmod p$ with a vector group; note the shift from 1 to 2 !

The homomorphism property should be viewed as an "extra-symmetry" of the function ψ
δ-modular forms
δ-modular forms
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
δ-modular forms
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m
δ-modular forms
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m $V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
δ-modular forms
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m $V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
δ-modular forms
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m $V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$M^{n}(w)$ space of δ-modular forms of weight $w=\sum a_{i} \phi^{i} \in W$:
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m $V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$M^{n}(w)$ space of δ-modular forms of weight $w=\sum a_{i} \phi^{i} \in W$: $f(\lambda \cdot P)=\lambda^{w} f(P), \lambda \in R^{\times}$.
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m $V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$M^{n}(w)$ space of δ-modular forms of weight $w=\sum a_{i} \phi^{i} \in W$:
$f(\lambda \cdot P)=\lambda^{w} f(P), \lambda \in R^{\times}$.
$M^{n} \rightarrow R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge} \delta$-Fourier map

δ-modular forms

$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m $V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$M^{n}(w)$ space of δ-modular forms of weight $w=\sum a_{i} \phi^{i} \in W$:
$f(\lambda \cdot P)=\lambda^{w} f(P), \lambda \in R^{\times}$.
$M^{n} \rightarrow R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge} \delta$-Fourier map
(not injective but injective on each $M^{n}(w)$)
$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m $V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$M^{n}(w)$ space of δ-modular forms of weight $w=\sum a_{i} \phi^{i} \in W$:
$f(\lambda \cdot P)=\lambda^{w} f(P), \lambda \in R^{\times}$.
$M^{n} \rightarrow R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge} \delta$-Fourier map
(not injective but injective on each $M^{n}(w)$)
$M^{\infty}=\bigcup M^{n}, R((q))^{\infty}=\bigcup R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge}$

δ-modular forms

$X \subset X_{1}(N), N>4, X$ affine, disjoint from cusps and supersingular locus
L line bundle on $X_{1}(N)$ whose m-power has sections modular forms of weight m
$V^{*}=\operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}} L_{X}^{m}\right)$ physical line bundle on X minos zero section
$M^{n}=\mathcal{O}^{n}\left(V^{*}\right)$ ring of δ-modular functions of order n
$M^{n}(w)$ space of δ-modular forms of weight $w=\sum a_{i} \phi^{i} \in W$:
$f(\lambda \cdot P)=\lambda^{w} f(P), \lambda \in R^{\times}$.
$M^{n} \rightarrow R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge} \delta$-Fourier map
(not injective but injective on each $M^{n}(w)$)
$M^{\infty}=\bigcup M^{n}, R((q))^{\infty}=\bigcup R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge}$
$I^{n}(w) \subset M^{n}(w)$ space of isogeny covariant forms ("Hecke semi-invariant")
δ-symmetric series

δ-symmetric series

A series $f \in R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge}$ is called $\delta-p$-symmetric if there exists a series

δ-symmetric series

A series $f \in R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge}$ is called $\delta-p-$ symmetric if there exists a series $F \in R\left[\left[q_{1}, \ldots, q_{p}\right]\right]\left[\left(q_{1} \ldots q_{p}\right)^{-1}\right]\left[q_{1}^{\prime}, \ldots, q_{p}^{\prime}, \ldots, q_{1}^{(n)}, \ldots, q_{p}^{(n)}\right]^{\wedge}$ such that

δ-symmetric series

A series $f \in R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge}$ is called $\delta-p-$ symmetric if there exists a series $F \in R\left[\left[q_{1}, \ldots, q_{p}\right]\right]\left[\left(q_{1} \ldots q_{p}\right)^{-1}\right]\left[q_{1}^{\prime}, \ldots, q_{p}^{\prime}, \ldots, q_{1}^{(n)}, \ldots, q_{p}^{(n)}\right]^{\wedge}$ such that $f\left(q_{1}, \ldots, q_{1}^{(n)}\right)+\ldots+f\left(q_{p}, \ldots, q_{p}^{(n)}\right)=F\left(s_{1}, \ldots, s_{p}, \ldots, \delta^{n}\left(s_{1}\right), \ldots, \delta^{n}\left(s_{p}\right)\right)$

δ-symmetric series

A series $f \in R((q))\left[q^{\prime}, \ldots, q^{(n)}\right]^{\wedge}$ is called $\delta-p-$ symmetric if there exists a series $F \in R\left[\left[q_{1}, \ldots, q_{p}\right]\right]\left[\left(q_{1} \ldots q_{p}\right)^{-1}\right]\left[q_{1}^{\prime}, \ldots, q_{p}^{\prime}, \ldots, q_{1}^{(n)}, \ldots, q_{p}^{(n)}\right]^{\wedge}$ such that $f\left(q_{1}, \ldots, q_{1}^{(n)}\right)+\ldots+f\left(q_{p}, \ldots, q_{p}^{(n)}\right)=F\left(s_{1}, \ldots, s_{p}, \ldots, \delta^{n}\left(s_{1}\right), \ldots, \delta^{n}\left(s_{p}\right)\right)$ where $s_{1}=\sum_{i} q_{i}, s_{2}=\sum_{i<j} q_{i} q_{j}, \ldots, s_{p}=q_{1} \ldots q_{p}$.

Example 3: f^{1} and f^{∂}

Example 3: f^{1} and f^{∂}
Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012)

Example 3: f^{1} and f^{∂}
Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012)

1. There exists $f^{1} \in M^{1}(-1-\phi)$ with $\delta-p-$ symmetric expansion $\frac{1}{p} \log \left(1+p \frac{q^{\prime}}{q^{p}}\right)$

Example 3: f^{1} and f^{2}
Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012)

1. There exists $f^{1} \in M^{1}(-1-\phi)$ with $\delta-p-$ symmetric expansion $\frac{1}{p} \log \left(1+p \frac{q^{\prime}}{q^{p}}\right)$
2. There exists $f^{\partial} \in M^{1}(\phi-1)$ with δ-Fourier expansion 1

Example 3: f^{1} and f^{∂}

Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012)

1. There exists $f^{1} \in M^{1}(-1-\phi)$ with $\delta-p-$ symmetric expansion $\frac{1}{p} \log \left(1+p \frac{q^{\prime}}{q^{p}}\right)$
2. There exists $f^{\partial} \in M^{1}(\phi-1)$ with δ-Fourier expansion 1
3. f^{1} and f^{∂} " δ-generate" all $I^{n}(w)$.

Example 3: f^{1} and f^{∂}

Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012)

1. There exists $f^{1} \in M^{1}(-1-\phi)$ with $\delta-p-$ symmetric expansion $\frac{1}{p} \log \left(1+p \frac{q^{\prime}}{q^{p}}\right)$
2. There exists $f^{\partial} \in M^{1}(\phi-1)$ with δ-Fourier expansion 1
3. f^{1} and f^{∂} " δ-generate" all $I^{n}(w)$.
4. $f^{\partial}-1$ " δ-generates" $\operatorname{Ker}\left(M^{\infty} \rightarrow R((q))^{\infty}\right)$

Example 3: f^{1} and f^{∂}

Theorem (B: Crelle 2000, Barcau: Compositio 2003, B+Saha: JNT 2012)

1. There exists $f^{1} \in M^{1}(-1-\phi)$ with $\delta-p-$ symmetric expansion $\frac{1}{p} \log \left(1+p \frac{q^{\prime}}{q^{p}}\right)$
2. There exists $f^{\partial} \in M^{1}(\phi-1)$ with δ-Fourier expansion 1
3. f^{1} and f^{∂} " δ-generate" all $I^{n}(w)$.
4. $f^{\partial}-1$ " δ-generates" $\operatorname{Ker}\left(M^{\infty} \rightarrow R((q))^{\infty}\right)$
5. f^{1} and $f^{\partial}-1 \quad " \delta$-generate" $\operatorname{Ker}\left(M^{\infty} \rightarrow R((q))^{\wedge}\right)$

Example 3, continued

Example 3, continued

Remarks

Example 3, continued

Remarks

1. f^{1} above can be viewed as a lift to characteristic zero in δ-geometry of the Kodaira-Spencer class $\frac{2 A d B-3 B d A}{\Delta}$ of the universal family of elliptic curves $y^{2}=x^{3}+A x+B$; the reduction $\bmod p$ of f^{1} is $H^{\frac{2 A d B-3 B d A}{\Delta}}+$ (order zero terms) where H is the Hasse invariant.

Example 3, continued

Remarks

1. f^{1} above can be viewed as a lift to characteristic zero in δ-geometry of the Kodaira-Spencer class $\frac{2 A d B-3 B d A}{\Delta}$ of the universal family of elliptic curves $y^{2}=x^{3}+A x+B$; the reduction $\bmod p$ of f^{1} is $H^{\frac{2 A d B-3 B d A}{\Delta}}+$ (order zero terms) where H is the Hasse invariant.
2. $f^{\partial} \bmod p$ is H so f^{∂} can be viewed as a lift to characteristic zero in δ-geometry of H; the lift E_{p-1} should be viewed as a wrong lift because it is not isogeny covariant.

Example 3, continued

Remarks

1. f^{1} above can be viewed as a lift to characteristic zero in δ-geometry of the Kodaira-Spencer class $\frac{2 A d B-3 B d A}{\Delta}$ of the universal family of elliptic curves $y^{2}=x^{3}+A x+B$; the reduction $\bmod p$ of f^{1} is $H^{\frac{2 A d B-3 B d A}{\Delta}}+$ (order zero terms) where H is the Hasse invariant.
2. $f^{\partial} \bmod p$ is H so f^{∂} can be viewed as a lift to characteristic zero in δ-geometry of H; the lift E_{p-1} should be viewed as a wrong lift because it is not isogeny covariant.
3. 6 and 7 above can be viewed as lifts to characteristic zero in δ-geometry of the Serre-Swinnerton Dyer theorem on the kernel of the Fourier expansion map $\bar{M} \rightarrow k((q))$ in characteristic p .

Example 4: δ-Igusa curve

Example 4: δ-Igusa curve

Theorem (B+Saha: JNT 2012)

Example 4: δ-Igusa curve

Theorem (B+Saha: JNT 2012)
If $S_{\odot}^{\infty}=\operatorname{Im}\left(M^{\infty} \rightarrow R((q))^{\infty}\right)$ and $S^{\infty}:=\cup \mathcal{O}^{n}(X)$ then $\widehat{S^{\infty}} \subset \widehat{S_{\odot}^{\infty}}$ is a $\mathbb{Z}_{p}^{\times}-\delta$-extension

Example 4: δ-Igusa curve

Theorem (B+Saha: JNT 2012)
If $S_{\odot}^{\infty}=\operatorname{Im}\left(M^{\infty} \rightarrow R((q))^{\infty}\right)$ and $S^{\infty}:=\cup \mathcal{O}^{n}(X)$ then $\widehat{S^{\infty}} \subset \widehat{S_{\odot}^{\infty}}$ is a $\mathbb{Z}_{p}^{\times}-\delta$-extension
Remark

Example 4: δ-Igusa curve

Theorem (B+Saha: JNT 2012)
If $S_{\odot}^{\infty}=\operatorname{Im}\left(M^{\infty} \rightarrow R((q))^{\infty}\right)$ and $S^{\infty}:=\cup \mathcal{O}^{n}(X)$ then $\widehat{S^{\infty}} \subset \widehat{S_{\odot}^{\infty}}$ is a $\mathbb{Z}_{p}^{\times}-\delta$-extension
Remark
The theorem above can be viewed a lift to characteristic zero in δ-geometry of the fact that the Igusa curve $I_{1}(N)_{/ \mathbb{F}_{p}}$ in characteristic p is a \mathbb{F}_{p}^{\times}-cover of the modular curve $X_{1}(N)_{/ \mathbb{F}_{p}} . I_{1}(N)_{/ \mathbb{F}_{p}}$ has another lift to characteristic zero in usual algebraic geometry; that lift is a \mathbb{F}_{p}^{\times}-cover of the modular curve $X_{1}(N)_{/ \mathbb{Z}_{p}}$ and should be viewed as the wrong one because the symmetry group is too small

Example 5: f^{\sharp}

Example 5: f^{\sharp}

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)

Example 5: f^{\sharp}

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)
If $f=\sum a_{n} q^{n}$ is a new form of weight 2 over \mathbb{Z} then the form $f^{\sharp} \in M^{2}(0)$ obtained by composing the Eichler-Shimura map $\Phi: X_{1}(N)(R) \rightarrow A_{f}(R)$ with the homomorphism $\psi: A_{f}(R) \rightarrow R$ has a δ-Fourier expansion that is $\delta-p-$ symmetric and that is congruent $\bmod p$ to

Example 5: f^{\sharp}

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)
If $f=\sum a_{n} q^{n}$ is a new form of weight 2 over \mathbb{Z} then the form $f^{\sharp} \in M^{2}(0)$ obtained by composing the Eichler-Shimura map $\Phi: X_{1}(N)(R) \rightarrow A_{f}(R)$ with the homomorphism $\psi: A_{f}(R) \rightarrow R$ has a δ-Fourier expansion that is $\delta-p-$ symmetric and that is congruent $\bmod p$ to
$\sum_{p \backslash \hbar} \frac{a_{n}}{n} q^{n}-a_{p}\left(\sum a_{m} q^{m p}\right) \frac{q^{\prime}}{q^{p}}+\left(\sum a_{m} q^{m p^{2}}\right)\left(\frac{q^{\prime}}{q^{p}}\right)^{p}$

Example 5: f^{\sharp}

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)
If $f=\sum a_{n} q^{n}$ is a new form of weight 2 over \mathbb{Z} then the form $f^{\sharp} \in M^{2}(0)$ obtained by composing the Eichler-Shimura map $\Phi: X_{1}(N)(R) \rightarrow A_{f}(R)$ with the homomorphism $\psi: A_{f}(R) \rightarrow R$ has a δ-Fourier expansion that is $\delta-p-$ symmetric and that is congruent $\bmod p$ to
$\sum_{p \backslash h} \frac{a_{n}}{n} q^{n}-a_{p}\left(\sum a_{m} q^{m p}\right) \frac{q^{\prime}}{q^{p}}+\left(\sum a_{m} q^{m p^{2}}\right)\left(\frac{q^{\prime}}{q^{p}}\right)^{p}$
Remark

Example 5: f^{\sharp}

Theorem (B: JNT 2008, B+Poonen, Compostio 2009)
If $f=\sum a_{n} q^{n}$ is a new form of weight 2 over \mathbb{Z} then the form $f^{\sharp} \in M^{2}(0)$ obtained by composing the Eichler-Shimura map $\Phi: X_{1}(N)(R) \rightarrow A_{f}(R)$ with the homomorphism $\psi: A_{f}(R) \rightarrow R$ has a δ-Fourier expansion that is $\delta-p-$ symmetric and that is congruent $\bmod p$ to

$$
\sum_{p \backslash h} \frac{a_{n}}{n} q^{n}-a_{p}\left(\sum a_{m} q^{m p}\right) \frac{q^{\prime}}{q^{p}}+\left(\sum a_{m} q^{m p^{2}}\right)\left(\frac{q^{\prime}}{q^{p}}\right)^{p}
$$

Remark
$\sum n^{p-2} a_{n} q^{n}$ has a remarkable lift to characteristic zero as a p-adic modular form a la Serre, $\sum \frac{a_{n}}{n} q^{n}$; this should be viewed as a wrong lift while f^{\sharp} above should be viewed as the "correct" lift because it has more symmetry "with respect to Heegner points"

Example 6: f^{0}

Example 6: f^{0}

f^{0} is not a δ-modular form but rather an "Igusa δ-modular form. It has weight 1 and $\phi\left(f^{0}\right) / f^{0}=f^{\partial}$

Example 6: f^{0}

f^{0} is not a δ-modular form but rather an "Igusa δ-modular form. It has weight 1 and $\phi\left(f^{0}\right) / f^{0}=f^{\partial}$
f^{0} should be viewed as the "correct" lift to characteristic zero of Serre's weight one modular form mod p on the lgusa curve a; we skip this discussion; cf. B+Saha, JNT 2012

In search of a unifying theory

In search of a unifying theory
We saw algebro-geometric objects $\bar{\Sigma} / k$

In search of a unifying theory

We saw algebro-geometric objects $\bar{\Sigma} / k$
having "wrong" lifts Σ / R in algebraic geometry

In search of a unifying theory

We saw algebro-geometric objects $\bar{\Sigma} / k$
having "wrong" lifts Σ / R in algebraic geometry but having "correct" lifts Σ_{δ} / R in δ-geometry

In search of a unifying theory

We saw algebro-geometric objects $\bar{\Sigma} / k$
having "wrong" lifts Σ / R in algebraic geometry
but having "correct" lifts Σ_{δ} / R in δ-geometry
What makes a lift "correct" versus "wrong" are certain extra " δ-symmetries" such as:

In search of a unifying theory
We saw algebro-geometric objects $\bar{\Sigma} / k$
having "wrong" lifts Σ / R in algebraic geometry
but having "correct" lifts Σ_{δ} / R in δ-geometry
What makes a lift "correct" versus "wrong" are certain extra " δ-symmetries" such as:

- big δ-Galois group

In search of a unifying theory
We saw algebro-geometric objects $\bar{\Sigma} / k$
having "wrong" lifts Σ / R in algebraic geometry
but having "correct" lifts Σ_{δ} / R in δ-geometry
What makes a lift "correct" versus "wrong" are certain extra " δ-symmetries" such as:

- big δ-Galois group
- homomorphism property

In search of a unifying theory
We saw algebro-geometric objects $\bar{\Sigma} / k$
having "wrong" lifts Σ / R in algebraic geometry
but having "correct" lifts Σ_{δ} / R in δ-geometry
What makes a lift "correct" versus "wrong" are certain extra " δ-symmetries" such as:

- big δ-Galois group
- homomorphism property
- $\delta-p$-symmetry of series expansion

In search of a unifying theory
We saw algebro-geometric objects $\bar{\Sigma} / k$
having "wrong" lifts Σ / R in algebraic geometry
but having "correct" lifts Σ_{δ} / R in δ-geometry
What makes a lift "correct" versus "wrong" are certain extra " δ-symmetries" such as:

- big δ-Galois group
- homomorphism property
- $\delta-p$-symmetry of series expansion
- isogeny covariance, etc.
there is evidence of connections between the above manifestations of δ-symmetry which may indicate the presence of a common concept

In search of a unifying theory

We saw algebro-geometric objects $\bar{\Sigma} / k$
having "wrong" lifts Σ / R in algebraic geometry
but having "correct" lifts Σ_{δ} / R in δ-geometry
What makes a lift "correct" versus "wrong" are certain extra " δ-symmetries" such as:

- big δ-Galois group
- homomorphism property
- $\delta-p$-symmetry of series expansion
- isogeny covariance, etc.
there is evidence of connections between the above manifestations of δ-symmetry which may indicate the presence of a common concept

There is evidence that Σ_{δ} / k could be central fibers for deformations in a (yet to be developed) δ-arithmetic deformation theory

