A Torsor of Lifts of The Frobenius

Taylor Dupuy

POINT OF THIS TALK

Theorem (Dupuy 2012). For curves over (+technical hypoth) the sheaf of formal lifts of the Frobenius are a torsor under a line bundle.
(Amounts to proving that the first P -jet space of a curve is a is an affine bundle with an "affine linear structure.")
(Statement really says that local lifts of the Frobenius are parametrized by something linear)

The Result

Theorem. Let X over $W_{p \infty}\left(\overline{\mathbb{F}}_{p}\right)$ be a smooth projective curve of genus $g \geq 1$. If $p>6 g-5$ then $J_{p}^{1}(X)$ is a torsor under a line bundle.

Remarks on the Proof

- Prove reduction of the structure group of the first p-jet spaces to the affine linear group.
- Uses are "pairing" between group cohomology and cech cohomology together with vanishing theorems to sucessively reduce the structure group.

Remarks on p-jets

- Introduced by Buium to study Lang conjecture in the Arithmetic setting --using intersections in p-jets
- The nth p-jet space of a scheme is a scheme (or p-formal scheme) whose Zariski closed subsets correspond to Kolchin closed sets of the original scheme.
- Kolchin closed are just sets cut-out by "Arithmetic Differential Equations".

What is a p-derivation?

Fermat's Little Theorem
$\forall n \in \mathbb{Z}, \forall p$ prime

$$
\begin{array}{c|c}
n-n^{p}=p \\
\text { CRAP }=\frac{n-n^{p}}{p} \\
\delta_{p}(n)=\frac{n-n^{p}}{p} & \bmod p \\
& \text { The Frobenius is a } \\
F: A / p \mapsto A / p \\
a \mapsto a^{p}
\end{array}
$$

This is a p-derivation

Properties of p-derivations

Product Rule

$$
\delta_{p}(a b)=\delta_{p}(a) b^{p}+a^{p} \delta_{p}(b)+p \delta_{p}(a) \delta_{p}(b)
$$

Sum Rule

$$
\delta_{p}(a+b)=\delta_{p}(a)+\delta_{p}(b) \underbrace{\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{j} a^{p-j} b^{j}}_{\text {non-linear }}
$$

(Buium, Joyal ~1994)
Abstract Definition: $\delta_{p}: A \rightarrow B$ is a p-derivation provided that

Always an A algebra
Product Rule:

$$
\delta_{p}(a b)=\delta_{p}(a) b^{p}+a^{p} \delta_{p}(b)+p \delta_{p}(a) \delta_{p}(b)
$$

Sum Rule:

$$
\delta_{p}(a+b)=\delta_{p}(a)+\delta_{p}(b)-\sum_{j=1}^{p-1} \frac{1}{p}\binom{p}{j} a^{p-j} b^{j}
$$

Proposition: For $\delta_{p}: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\delta_{p}(n)=\frac{n-n^{p}}{p}$

show $\delta_{p}\left(p^{m}\right)=p^{m-1} .\left(\begin{array}{l}\text { unit } \bmod p)\end{array}\right.$

Example:

$$
\begin{aligned}
\delta_{p}(p) & =\frac{p-p^{p}}{p} \\
& =1-p^{p-1}
\end{aligned}
$$

Idea: order of vanishing is "bumped down"

$$
\begin{gathered}
\delta_{t}=\frac{d}{d t} \\
\delta_{t}\left(t^{n}\right)=n \cdot t^{n-1}
\end{gathered}
$$

derivations

ring homomorphisms

$$
\delta: A \rightarrow A
$$

$$
f: A \rightarrow A[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle
$$

"dual numbers" "infinitesimals"
p-derivations ring homomorphisms
$\delta_{p}: A \rightarrow A$

"Witt vectors"
"wittfinitesimals"
"Wittferentiation"

Analogies

Dual Numbers

$$
D_{1}(A)=A[t] /\left\langle t^{2}\right\rangle
$$

Truncated Witt Vectors
$W_{1}(A)$

Power Series

$$
D(A)=A[[t]]
$$

Witt Vectors
$W(A)$

Lifts of the Frobenius

Definition: A lift of the Frobenius is a ring homomorphism $\phi: A \rightarrow B$ such that

$$
\phi(a) \equiv a^{p} \bmod p
$$

Proposition: If $\delta_{p}: A \rightarrow B$ is a p-derivation then

$$
\phi(a):=a^{p}+p \delta_{p}(a)
$$

is a lift of the Frobenius.

Conversely, if B is p-torsion free ring with a lift of the Frobenius $\phi: A \rightarrow B$ then

$$
\delta_{p}(a):=\frac{\phi(a)-a^{p}}{p}
$$

defines a p-derivation.

p-Jets I

$$
\begin{aligned}
A^{1} & =\Lambda_{p, 1} \odot A=\mathcal{O}\left(J_{p}^{1}(\operatorname{Spec}(A))\right) \\
& =\frac{A[\dot{a}: a \in A]}{\text { (relations for } p \text {-derivations) }}
\end{aligned}
$$

$$
\delta_{u n i v}: A \rightarrow A^{1}
$$

Universal Property:

p-Jets 2

Setup: $W=W\left(\overline{\mathbb{F}}_{p}\right)=\widehat{\mathbb{Z}}_{p}^{\mathrm{ur}} \quad$ first p -jet space X / W smooth

local lifts of the $\longrightarrow \begin{aligned} & \text { Frobenius } \\ & \phi: U \rightarrow U\end{aligned}$ $\longrightarrow \begin{aligned} & \text { Frobenius } \\ & \phi: U \rightarrow U\end{aligned}$
local sections
$\{$ lifts of Frobenius on $U\}=\Gamma\left(U, J_{p}^{1}(X)\right)$

How do we get a Torsor structure?

Philosophy: p-jets know all about lifts of the Frobenius.
$\{$ lifts of Frobenius on $U\}=\Gamma\left(U, J_{p}^{1}(X)\right)$
Recipe for torsor structure:
Step I: Show that the first p-jet space of a smooth variety is an affine bundle which admits an additional structure.
Step 2: Reduce the structure group to the "affine linear group" (which is equivalent to being a torsor under a line bundle)

Defn. An affine bundle is a fiber bundle with fibers \mathbb{A}^{n}
Lemma. For $X / W\left(\overline{\mathbb{F}}_{p}\right)$ smooth the p-adic completion of the first p-jet space $\widehat{J_{p}^{1}(X)}$ is an affine bundle.
obligatory bundle diagram

$$
\begin{aligned}
& \widehat{J_{p}^{1}(X)} \supset \pi^{-1}(\widehat{U}) \cong \widehat{U} \hat{\times} \widehat{\mathbb{A}}^{n} \\
& \left.\pi\right|_{\widehat{X}} \supset \widehat{U}
\end{aligned}
$$

obligatory bundle picture

Fix an F-bundle E and a trivializing cover

$$
\begin{aligned}
& E \supset \pi^{-1}\left(U_{i}\right) \xrightarrow[\psi_{i}]{\sim} U_{i} \times F \\
& \pi \\
& \text {, } \\
& X \supset U_{i} \\
& \psi_{i j}:=\psi_{i} \circ \psi_{j}^{-1} \in \underline{\operatorname{Aut}}(F)\left(U_{i j}\right) \\
& U_{i j} \times F \underset{\psi_{i}}{\sim} \pi^{-1}\left(U_{i j}\right) \xrightarrow[\psi_{j}]{\sim} U_{j i} \times F \\
& U_{i j}=U_{i} \cap U_{j}
\end{aligned}
$$

$$
U_{i j} \times F \underset{\psi_{i}}{\sim} \pi_{i j}:=\psi_{i} \circ \psi_{j}^{-1} \in \underline{\operatorname{Aut}}(F)\left(U_{i j}\right) \underset{\psi_{j}}{\sim} U_{j i} \times F
$$

cohomology class

$$
\rightsquigarrow\left[\psi_{i j}\right] \in \check{H}^{1}(X, \underline{\operatorname{Aut}}(F))
$$

Our Particular Application

$J^{1}(X) \supset \pi^{-1}\left(\widehat{U}_{i}\right) \xrightarrow[\psi_{i}]{\sim} \widehat{U}_{i} \hat{\times} \widehat{\mathbb{A}}(\pi)$
$\begin{aligned} & \pi \\ & \\ & \widehat{X} \supset \widehat{U}_{i}\end{aligned}$

$$
\rightsquigarrow \beta:=\left[\psi_{i j}\right] \in H^{1}\left(\widehat{X}, \underline{\operatorname{Aut}}\left(\widehat{\mathbb{A}}^{m}\right)\right)
$$

Controls "Deligne-Illusie class"

Information Modulo p:
 Theorem

$$
\beta_{0}=\left[a_{i j}+b_{i j} T\right] \in H^{1}\left(X_{0}, \mathrm{AL}_{1}\right)
$$

idea used in A

$$
\mathrm{AL}_{1}=\underline{\operatorname{Aut}}\left(\mathbb{A}_{\mathbb{F}_{p}}\right) \quad \sim \mathcal{O}_{X_{0}} \rtimes \mathcal{O}_{X_{0}}^{\times}
$$

$$
\begin{gathered}
a+b T \circ c+d T=a+b c+b d T \\
\mathcal{O}_{X_{0}} \rtimes \mathcal{O}_{X_{0}}^{\times} \xrightarrow{\pi} \mathcal{O}_{X_{0}}^{\times} \\
H^{1}\left(X, \mathcal{O}_{X} \rtimes \mathcal{O}_{X}^{\times}\right) \xrightarrow{\pi_{0}} H^{1}\left(X, \mathcal{O}_{X}^{\times}\right) \\
\pi\left(\beta_{0}\right)=\left[b_{i j}\right]=\left[F^{*} T_{X_{0}}\right] \\
\square
\end{gathered} \begin{array}{|c}
\substack{\text { Conventions } \\
\varphi_{i}: \\
: \mathcal{O}\left(U_{i}\right) \rightarrow L\left(U_{i}\right) \\
\varphi_{i}(1)=v_{i} \\
b_{i j} v_{i}=v_{j} \\
[L]=\left[b_{i j}\right]}
\end{array}
$$

Remarks

- The fibers for the bundle structure on the first p-jet spaces are affine spaces
- The transition maps are univariate polynomial automorphisms
- The structure of these groups is extremely rich (p-formally or mod $p^{\wedge} n$)
- Similar "Arithmetic Kodaira-Spencer" classes originally introduced by Buium for Abelian Varieties

Ideas for Mod $\mathrm{p}^{\wedge} \mathrm{n}$

- Twisted (semi-direct product) cechcocycles give cocycles in line bundles.
- Group cocycles applied to Cech cocycles produce twisted cocycles
- Vanishing theorems for line bundles give information about our twisted cocycles.
- "Triviality" of twisted cocycles allows us to reduce our structure group

Twisted Cocycles

Working out what a Cech cocycle in $\mathcal{O} \rtimes \mathcal{O}^{\times}$looks like gives

$$
\left(a_{i j}, b_{i j}\right)\left(a_{j k}, b_{j k}\right)\left(a_{k i}, b_{k i}\right)=1
$$

which gives

$$
\begin{aligned}
b_{i j} b_{j k} b_{k i} & =1 \\
a_{i j}+b_{i j} a_{j k}+b_{i j} b_{j k} a_{k i} & =0
\end{aligned}
$$

Alternatively, one can get such pairs from a Cech cocycle for the line bundle $\left[b_{i j}\right] \in \operatorname{Pic}(Y)=H^{1}\left(Y, \mathcal{O}^{\times}\right)$

Strategy: Produce twisted cocycles from cocycles with values in more complicated groups to study them.

Structures!

Back to the abstract setting with an arbitrary fiber bundle

- Fix an F-bundle and subgroup $H \leq \underline{\operatorname{Aut}}(F)$
- An H-atlas is a trivializing cover whose transition maps lie in the subgroup

$$
\begin{gathered}
\left\{\left(U_{i}, \psi_{i}\right)\right\}=H \text {-atlas } \\
\psi_{i j} \in H\left(U_{i j}\right)
\end{gathered}
$$

- A H-structure is a maximal H-atlas.

Degree Structures

Naturally Occuring Structure Group

$$
\begin{gathered}
\left\{a_{0}+a_{1} T+p a_{2} T^{2}+\cdots+p^{n-1} a_{n} T^{n} \bmod p^{n}\right\} \leq \underline{\operatorname{Aut}}\left(\mathbb{A}_{W / p^{n}}^{1}\right) \\
=A_{n}
\end{gathered}
$$

$$
\begin{gathered}
\text { Affine Linear Group } \\
\left\{a+b T \bmod p^{n}\right\} \leq \underline{\operatorname{Aut}}\left(\mathbb{A}_{W / p^{n}}^{1}\right)
\end{gathered}
$$

Group cocycles that are involved

example: cocycle we use to get twisted cocycle from an A_{d} structure.

$$
\psi(T) \mapsto \psi^{\prime \prime}(T) / \psi^{\prime}(T) \bmod p
$$

NEW multivariate version!

$$
C[f]=\left(\left(d f^{-1}\right)^{j}{ }_{l}\left(d^{2} f\right)^{l}{ }_{j k}\right)
$$

example: in dimension 2

$$
\begin{aligned}
C_{1}[\psi] & =\frac{f_{x x} g_{y}-f_{x y} g_{x}-g_{x x} f_{y}+g_{x y} f_{x}}{f_{x} g_{y}-g_{x} f_{y}} \\
C_{2}[\psi] & =\frac{f_{x y} g_{y}-f_{y y} g_{x}-g_{x y} g_{y}+g_{y y} f_{x}}{f_{x} g_{y}-g_{x} f_{y}}
\end{aligned}
$$

THE END

