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The Inverse Galois Problem

I Let K be a field.

I IGP over K : Is every finite group a Galois group over K?

I The IGP is conjectured to have a positive answer over all
number fields.
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Strategy

I How do you realize G over a number field K?

I Realize G over K (x). Then specialize to some ↵ 2 K .

I For example, for G = Z/2Z: adjoin y such that y2 = x to
Q(x). If you specialize Q(y)/Q(x) to x = 2 you get
Q(

p
2)/Q.
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Strategy

I Can always specialize:
Hilbert’s Irreducibility Theorem: If f (x , y) 2 K [x , y ] is
irreducible, then for infinitely many ↵ 2 K , f (↵, y) 2 K [y ] is
irreducible.
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Translation to Algebraic Geometry

I Think of K (x) as the function field of P1
K , and of its overfield

as the function field of some curve.

I Let G be a finite group, and K a field. A G -Galois branched
cover of K -curves is a finite, connected map of smooth,
projective K -curves whose extension of function fields is
Galois with group G .

I For example: P1
Q ! P1

Q defined by y

2 = x is a Z/2Z-Galois
cover. (Induced extension of function fields: Q(y)/Q(x).)

I The Regular Inverse Galois Problem over a field K : Does
every finite group G satisfy that there exists a G -Galois
branched cover of K -curves over P1

K?
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Riemann’s Existence Theorem

I Is there hope? Yes!

I For every group G there is a G -Galois branched cover of P1
Q̄.

(Riemann’s Existence Theorem)

I RET: Every topological covering space of P1
C r {a1, ..., ar}

with deck transformation group G is algebraic. Furthermore,
if a1, ..., ar are Q̄-rational, then this cover descends to Q̄.

I Classically, if G is generated by r � 1 elements, there’s a
covering space of P1

C r {a1, ..., ar} with deck transformation
group G .

I Since RET is not constructive, we don’t know what number
fields these covers descend to.
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Fields of Definition

I
K is a field of definition of XQ̄ ! P1

Q̄ as a mere cover if the

map descends to K : XK ! P1
K .

I
K is a field of definition as a G-Galois branched cover if
furthermore XK ! P1

K can be chosen to be G -Galois.

I For example for P1
Q̄ ! P1

Q̄ defined by y

3 = x : Q is a f.o.d. as

a mere cover, but not as a Z/3Z-cover.
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I Most attempts to understand the descent of these covers have
focused on the “field of moduli”.

I Definition: The field of moduli of a G -Galois branched of P1
Q̄

is the subfield of Q̄ fixed by all those � 2 Gal(Q̄/Q) that take
this cover to an isomorphic cover.

I The field of moduli of a G -Galois branched cover is the
intersection of all fields of definition as a G -Galois branched
cover. (Coombes and Harbater ’85)
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Previous Work

I Rigidity - Method of constructing covers with field of moduli
Q. (Matzat, Thompson, Belyi, Fried, Shih; Works only in
certain cases.)

I Exploring the ramification of the field of moduli over Q.
(Beckmann, Obus, Wewers, Raynaud, Flon, H.)

I When is the field of moduli a field of definition? (Belyi,
Dèbes, Wewers)
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Minimal Fields of Definition for a Model
Why is the field of moduli not a field of definition?
A Special Field of Definition

The Structure of the Fields of Definition

I Let XQ̄ ! P1
Q̄ be a G -Galois branched cover with field of

moduli M.

I Harbater and Coombes have proven that M is a field of
definition of XQ̄ ! P1

Q̄ as a mere cover.
I Theorem (H.): Let L be a field of definition as a mere cover,

and let XL ! P1
L be an L-model as a mere cover. Then there

exists a unique minimal field E containing L such that
E ⇥L XL ! P1

E is Galois.
I Furthermore, E/L is Galois with group a subgroup of Aut(G ).
I In particular there is always a field of definition (as a G -Galois

branched cover) that is Galois over the field of moduli with
Galois group a subgroup of Aut(G ).
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Why is the field of moduli not a field of definition?

I Two reasons:

1. Every model XM ! P1
M yields a di↵erent field of definition.

2. It is not true that for every overfield L of M and mere cover
model XL ! P1

L, the model descends to M.
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A Special Field of Definition

I Coombes and Harbater (’85): Let XQ̄ ! P1
Q̄ be a G -Galois

branched cover with field of moduli M. Then M(⇣n)n is a field
of definition as a G -Galois branched cover.

I H.: In fact [{n|9m:n divides |Z(G)|m}M(⇣n) is a field of definition
as a G -Galois branched cover.

I In particular there is a field of definition (as a G -Galois
branched cover) that, as an extension of the field of moduli,
ramifies only over primes that divide |Z (G )|.
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Earlier Result

I H. (earlier result): For every G there is a G -Galois branched
cover with field of moduli M, s.t. M/Q ramifies at most over
the primes that divide |G |.
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A Result Towards the IGP

I Corollary: For every G there is a G -Galois branched cover
with a field of definition (as a G -Galois branched cover) L, s.t.
L/Q ramified at most over the primes that divide |G |.

I Corollary: For every G there is a G -Galois field extension E/L,
where L/Q is ramified at most over primes that divide |G |.
(i.e., L is “almost” Q.)
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