Liftings of Elliptic and Hyperelliptic Curves

Luís Finotti

University of Tennessee

AMS Joint Meeting Jan 10, 2013

Witt Vectors

Let \mathbb{k} be a perfect field of characteristic $p>0$ and $W=\boldsymbol{W}(\mathbb{k})$ be the ring of Witt vectors over \mathbb{k}.
Remember also that we have a Frobenius map, which we denote by σ on W, defined by

$$
\boldsymbol{\sigma}\left(a_{0}, a_{1}, \ldots\right)=\left(a_{0}^{p}, a_{1}^{p}, \ldots\right)
$$

So, if σ denotes the Frobenius in characteristic p (i.e., $\sigma(a)=a^{p}$), we have a lifting of the Frobenius. More precisely, if $\pi: W \rightarrow \mathbb{k}$ is the reduction modulo p, we have the following diagram on multiplicative groups:

Witt Vectors (cont.)

Moreover, the Teichmüller lift $\tau: a \mapsto(a, 0,0, \ldots)$ (a group homomorphism) yields the following diagram:

Question

Can we also lift the Frobenius for curves over \mathbb{k} ?

Curves

More precisely, given a curve C / \mathbb{k} and if $\phi: C \rightarrow C^{\sigma}$ is the Frobenius map, is there a lifting C / W for which we can lift the Frobenius:

Answer: Yes, for ordinary elliptic curves and Abelian varieties (Deuring and Serre-Tate), but no for higher genus curves (Raynaud). In the case of elliptic curves we also have a Teichmüller lift.

Also, Mochizuki showed that one can lift the Frobenius for some curves of genus $g \geq 2$ if we allow singularities (at $(p-1)(g-1)$ points).

Ordinary Elliptic Curve

An elliptic curve (given by $y^{2}=x^{3}+a x+b$) over a field \mathbb{k} of characteristic $p>3$ is ordinary if $E[p] \cong \mathbb{Z} / p$. (Or, equivalently, if the coefficient of x^{p-1} in $\left(x^{3}+a x+b\right)^{(p-1) / 2}$ is non-zero.) Otherwise, the elliptic curve is said to be supersingular.
Note: Only finitely many elliptic curves (up to isomorphism) are supersingular.
We can lift the Frobenius for ordinary elliptic curves, i.e., if \mathbb{k} is a perfect field with $\operatorname{char}(\mathbb{k})=p$ and $E / \mathbb{k}: y_{0}^{2}=x_{0}^{3}+a_{0} x_{0}+b_{0}$, then there exists $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots\right), \boldsymbol{b}=\left(b_{0}, b_{1}, \ldots\right) \in W$ such that $\boldsymbol{E} / W: \boldsymbol{y}^{2}=\boldsymbol{x}^{3}+\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b}$ has a lifting of the Frobenius:

$$
\begin{aligned}
& \boldsymbol{E}(\boldsymbol{W}(\overline{\mathbb{k}})) \stackrel{\phi}{ } \boldsymbol{E}^{\sigma}(\boldsymbol{W}(\overline{\mathbb{k}}))
\end{aligned}
$$

Elliptic Teichmüller Lift

Moreover, the curve E above is unique up to isomorphism and it is called the canonical lifting of E.
As with Witt vectors, we also have a section of the reduction modulo p, the so called elliptic Teichmüller lift τ :

Also, τ is a group homomorphism, and one can show that:

$$
\tau\left(x_{0}, y_{0}\right)=\left(\left(F_{0}, F_{1}, F_{2}, \ldots\right),\left(y_{0}, y_{0} G_{1}, y_{0} G_{2}, \ldots\right)\right)
$$

where $F_{i}, G_{i} \in \mathbb{k}\left[x_{0}\right]$.

Error Correcting Codes

Voloch and Walker used canonical liftings and the elliptic Teichmüller lift to create error-correcting codes. The bounds for the parameters (which measure "how good" the resulting codes are likely to be) depend on the degrees of F_{i} 's and G_{i} 's, with lower degrees giving better bounds. They showed that F_{1} and G_{1} had minimal degrees, making the canonical lifting the natural choice.

On the other hand, F_{i} and G_{i} for $i \geq 2$ are not minimal.
One should note that, one can construct codes with more general liftings of curves in a very similar way.

Error Correcting Codes (cont.)

With elliptic curves, we have:

Theorem

Let E / \mathbb{k} as above and $\tilde{\boldsymbol{E}} / \boldsymbol{W}_{3}(\mathbb{k})$ be a lifting for which we have a lifting of points $\nu: E(\overline{\mathbb{k}}) \rightarrow \tilde{\boldsymbol{E}} / \boldsymbol{W}_{3}(\overline{\mathbb{k}})$ having "minimal degrees". Then $\tilde{\boldsymbol{E}}$ is the canonical lifting of E (modulo p^{3}) and we have a lifting of the Frobenius on the affine part of E so that the following diagram commutes:

$$
\begin{aligned}
& \tilde{\boldsymbol{E}}\left(\boldsymbol{W}_{3}(\overline{\mathbb{k}})\right) \xrightarrow{\tilde{\phi}}>\tilde{\boldsymbol{E}}^{\sigma}\left(\boldsymbol{W}_{3}(\overline{\mathbb{k}})\right)
\end{aligned}
$$

Moreover, any supersingular elliptic curve will yield larger degrees.

Minimal Degree Liftings

Therefore, the notions of ordinary elliptic curve and its canonical lifting (at least modulo p^{3}) can be defined strictly from the point of view of minimal degree liftings:

- E is ordinary if there is a lifting satisfying the lower bound on the degrees of the lifting map;
- \boldsymbol{E} is the canonical lifting of E if there is a lifting map satisfying the lower bound.
On the other hand, in this way, these notions can be generalized to higher genus curves, and in a very similar way, one can obtain very similar results for hyperelliptic curves!

Mochizuki Liftings

For genus 2 curves (and so hyperelliptic) in characteristic 3, one can have a Mochizuki lifting of the Frobenius if one removes (some) 2 points from the curve. These two points are invariant by the hyperelliptic involution and thus can be put at "infinity".

We then have:

Theorem (F.-Mochizuki)

The notions of "ordinary" and "canonical lifting" (modulo p^{2}) from minimal degree liftings theory coincide with the ones coming from Mochizuki's theory.

Thus, we were able to give a concrete example of a family of Mochizuki liftings.

The J_{n} Functions

We now return to ordinary elliptic curves and their canonical liftings.
If $\mathbb{k}^{\text {ord }}$ denotes the set of ordinary j-invariants in \mathbb{k}, we have functions $J_{i}: \mathbb{k}^{\text {ord }} \rightarrow \mathbb{k}$ such that $\left(j_{0}, J_{1}\left(j_{0}\right), J_{2}\left(j_{0}\right), \ldots\right)$ is the j-invariant of the canonical lifting of the curve with j-invariant $j_{0} \in \mathbb{k}^{\text {ord }}$.

Mazur's Question (to John Tate)

What kind of functions are these J_{n} ? Can one say anything about them?

First Computations

Examples:

$$
\begin{array}{ll}
p=5 & J_{1}=3 j_{0}^{3}+j_{0}^{4} ; \\
& J_{2}= \\
& 3 j_{0}^{5}+2 j_{0}^{10}+2 j_{0}^{13}+4 j_{0}^{14}+4 j_{0}^{15}+4 j_{0}^{16}+j_{0}^{17}+4 j_{0}^{18}+j_{0}^{19}+j_{0}^{20}+3 j_{0}^{23}+j_{0}^{24} .
\end{array}
$$

Question: Can these functions all be polynomials?

$$
p=7
$$

$$
J_{1}=3 j_{0}^{5}+5 j_{0}^{6}
$$

- $J_{2}=$
$\left(3 j_{0}^{21}+6 j_{0}^{28}+3 j_{0}^{33}+5 j_{0}^{34}+4 j_{0}^{35}+2 j_{0}^{36}+3 j_{0}^{37}+6 j_{0}^{38}+3 j_{0}^{39}+5 j_{0}^{40}+5 j_{0}^{41}+\right.$ $\left.5 j_{0}^{42}+2 j_{0}^{43}+3 j_{0}^{44}+6 j_{0}^{45}+3 j_{0}^{46}+5 j_{0}^{47}+5 j_{0}^{48}+3 j_{0}^{49}+3 j_{0}^{54}+5 j_{0}^{55}\right) /\left(1+j_{0}^{7}\right)$.

Note: If $j_{0}=-1$, then E is supersingular, i.e., no canonical lifting.

Pseudo-Canonical Liftings

(Superficial) Answer to Mazur's Question

For any p, we have that $J_{n} \in \mathbb{F}_{p}(X)$.

Tate's Question

Is there a supersingular value of j_{0} (for some fixed characteristic p) for which all functions J_{n} are regular at j_{0}. (E.g., $j_{0}=0$ for $p=5$ for J_{1} and J_{2} ?)

This lead us to define:

Definition

The elliptic curve over $\boldsymbol{W}(\mathbb{k})$ given by $\boldsymbol{j} \stackrel{\text { def }}{=}\left(j_{0}, J_{1}\left(j_{0}\right), J_{2}\left(j_{0}\right), \ldots\right)$ for such a supersingular j_{0} is a pseudo-canonical lifting of the elliptic curve given by j_{0}. Tate's question: do they exist at all?

Answer to Tate's Question

Theorem

Let $j_{0} \notin \mathbb{k}^{\text {ord }}$ and $p \geq 5$. Then:
$1 J_{1}$ is regular at j_{0} if, and only if, j_{0} is either 0 or 1728 .
$2 J_{2}$ is regular at j_{0} if, and only if, j_{0} is 0 .
3 For $n \geq 3$, we have that J_{n} is never regular at j_{0}.
For $p=2,3$ (in which case only $j_{0}=0$ is supersingular), we have that J_{i} is regular at 0 if, and only if, $i \leq 11$ for $p=2$ or $i \leq 5$ for $p=3$.

So, (unrestricted) pseudo-canonical liftings don't exits.

Answer to Mazur's Question

We need some notation: let

$$
\operatorname{ss}_{p}(X) \stackrel{\text { def }}{=} \prod_{j \text { supers. }}(X-j)
$$

(the supersingular polynomial) and

$$
S_{p}(X) \stackrel{\text { def }}{=} \prod_{\substack{j \text { supers. } \\ j \neq 0,1728}}(X-j) .
$$

One then has that $\operatorname{ss}_{p}(X), S_{p}(X) \in \mathbb{F}_{p}[X]$, and $S_{p}(0), S_{p}(1728) \neq 0$. Also, let

$$
\iota= \begin{cases}8, & \text { if } p=2 \\ 3, & \text { if } p=3 \\ 2, & \text { if } p=31 \\ 1, & \text { otherwise }\end{cases}
$$

Answer to Mazur's Question

Then, we have:

Theorem

Let $J_{i}=F_{i} / G_{i}$, with $F_{i}, G_{i} \in \mathbb{F}_{p}[X],\left(F_{i}, G_{i}\right)=1$, and G_{i} monic. Also, let $r_{i}=(i-1) p^{i-1}, s_{i}=\left((i-3) p^{i}+i p^{i-1}\right) / 3$ and $s_{i}^{\prime}=\max \left\{0, s_{i}\right\}$.
Then, for all $i \in \mathbb{Z}_{>0}$ we have:
$1 \operatorname{deg} F_{i}-\operatorname{deg} G_{i}=p^{i}-\iota$;
2 if $p \geq 5$, then $G_{i}=S_{p}(X)^{i p^{i-1}+(i-1) p^{i-2}} \cdot H_{i}$, where $H_{i} \mid X^{s_{i}^{\prime}} \cdot(X-1728)^{r_{i}}$;
3 if $p=2,3$, then $G_{i}=X^{t_{i}}$, where $t_{i} \leq p^{i}$.

Also, there is a formula for $J_{i}(X)$ (which can be simplified if $p \geq 3$) obtained from the classical modular polynomial.

Modular Functions

Assume from now $p \geq 5$. Another perspective: if E / \mathbb{k}, ordinary, is given by $y_{0}^{2}=x_{0}^{3}+a_{0} x_{0}+b_{0}$, and \boldsymbol{E} / W is its canonical lifting and (after some "choice") is given by $\boldsymbol{y}^{2}=\boldsymbol{x}^{3}+\boldsymbol{a x}+\boldsymbol{b}$, then

$$
\begin{aligned}
\boldsymbol{a} & =\left(A_{0}, A_{1}, A_{2}, \ldots\right), \\
\boldsymbol{b} & =\left(B_{0}, B_{1}, B_{2}, \ldots\right),
\end{aligned}
$$

where $A_{i}, B_{i} \in \mathbb{k}\left(a_{0}, b_{0}\right)$. In fact, if \mathcal{H} is the Hasse invariant of E (i.e., the coefficient of x_{0}^{p-1} is $\left.\left(x_{0}^{3}+a_{0} x_{0}+b_{0}\right)^{(p-1) / 2}\right)$, then A_{i}, B_{i} possibly have poles only at the zeros of \mathcal{H} (or $\Delta=4 a_{0}^{3}+27 b_{0}^{2}$).

Question

What are the weights of the A_{i} 's and B_{i} 's? What are the order of the poles?

Modular Functions (cont.)

Conjecture

$1 A_{i}$ has weight $4 p^{i}$.
$2 B_{i}$ has weight $6 p^{i}$.
$3 A_{i}$ and B_{i} have poles of order at most $(i-1) p+1$ at the zeros of \mathcal{H}. (At least for $i \leq 2$. Not enough data yet.)
$4 A_{i}$ and B_{i} have no zeros at zeros of Δ.

So, if true, the isomorphism $\left(a_{0}, b_{0}\right) \leftrightarrow\left(\lambda_{0}^{4} a_{0}, \lambda_{0}^{6} b_{0}\right)$ corresponds, via canonical liftings, to the isomorphism $(\boldsymbol{a}, \boldsymbol{b}) \leftrightarrow\left(\boldsymbol{\lambda}^{4} \boldsymbol{a}, \boldsymbol{\lambda}^{6} \boldsymbol{b}\right)$, where $\boldsymbol{\lambda}=\tau\left(\lambda_{0}\right)=\left(\lambda_{0}, 0,0, \ldots\right)$.

Thank you!

