Liftings of Elliptic and Hyperelliptic Curves

Luís Finotti

University of Tennessee

AMS Joint Meeting Jan 10, 2013

Background

Witt Vectors

Let \Bbbk be a *perfect* field of characteristic p > 0 and $W = W(\Bbbk)$ be the ring of Witt vectors over \Bbbk .

Remember also that we have a Frobenius map, which we denote by σ on W, defined by

$$\boldsymbol{\sigma}(a_0, a_1, \ldots) = (a_0^p, a_1^p, \ldots).$$

So, if σ denotes the Frobenius in characteristic p (i.e., $\sigma(a) = a^p$), we have a *lifting of the Frobenius*. More precisely, if $\pi : W \to \mathbb{k}$ is the reduction modulo p, we have the following diagram on multiplicative groups:

Background

Witt Vectors (cont.)

Moreover, the *Teichmüller lift* $\tau : a \mapsto (a, 0, 0, ...)$ (a *group homomorphism*) yields the following diagram:

Question

Can we also lift the Frobenius for curves over \Bbbk ?

Curves

More precisely, given a curve C/\Bbbk and if $\phi: C \to C^{\sigma}$ is the Frobenius map, is there a lifting C/W for which we can lift the Frobenius:

Answer: Yes, for *ordinary* elliptic curves and Abelian varieties (Deuring and Serre-Tate), but no for higher genus curves (Raynaud). In the case of elliptic curves we also have a *Teichmüller lift*.

Also, Mochizuki showed that one can lift the Frobenius for some curves of genus $g \ge 2$ if we allow singularities (at (p-1)(g-1) points).

13r

Ordinary Elliptic Curve

An elliptic curve (given by $y^2 = x^3 + ax + b$) over a field \Bbbk of characteristic p > 3 is ordinary if $E[p] \cong \mathbb{Z}/p$. (Or, equivalently, if the coefficient of x^{p-1} in $(x^3 + ax + b)^{(p-1)/2}$ is non-zero.) Otherwise, the elliptic curve is said to be supersingular.

Note: Only finitely many elliptic curves (up to isomorphism) are supersingular.

We can lift the Frobenius for ordinary elliptic curves, i.e., if \Bbbk is a perfect field with char(\Bbbk) = p and $E/\Bbbk : y_0^2 = x_0^3 + a_0x_0 + b_0$, then there exists $a = (a_0, a_1, \ldots), b = (b_0, b_1, \ldots) \in W$ such that $E/W : y^2 = x^3 + ax + b$ has a lifting of the Frobenius:

$$\begin{array}{c|c} \boldsymbol{E}(\boldsymbol{W}(\bar{\Bbbk})) & \stackrel{\phi}{\longrightarrow} \boldsymbol{E}^{\sigma}(\boldsymbol{W}(\bar{\Bbbk})) \\ \pi & & & & \\ \pi & & & & \\ E(\bar{\Bbbk}) & \stackrel{\phi}{\longrightarrow} \boldsymbol{E}^{\sigma}(\bar{\Bbbk}) \end{array}$$

Elliptic Teichmüller Lift

Moreover, the curve E above is unique up to isomorphism and it is called the *canonical lifting of* E.

As with Witt vectors, we also have a section of the reduction modulo p, the so called *elliptic Teichmüller lift* τ :

Also, τ is a group homomorphism, and one can show that:

 $\tau(x_0, y_0) = ((F_0, F_1, F_2, \ldots), (y_0, y_0 G_1, y_0 G_2, \ldots)),$

where $F_i, G_i \in \mathbb{k}[x_0]$.

L1F

Error Correcting Codes

Voloch and Walker used canonical liftings and the elliptic Teichmüller lift to create error-correcting codes. The bounds for the parameters (which measure "how good" the resulting codes are likely to be) depend on the degrees of F_i 's and G_i 's, with lower degrees giving better bounds. They showed that F_1 and G_1 had minimal degrees, making the canonical lifting the natural choice.

On the other hand, F_i and G_i for $i \ge 2$ are *not* minimal.

One should note that, one can construct codes with more general liftings of curves in a very similar way.

Error Correcting Codes (cont.)

With elliptic curves, we have:

Theorem

Let E/\Bbbk as above and $\tilde{E}/W_3(\Bbbk)$ be a lifting for which we have a lifting of points $\nu : E(\bar{\Bbbk}) \to \tilde{E}/W_3(\bar{\Bbbk})$ having "minimal degrees". Then \tilde{E} is the canonical lifting of E (modulo p^3) and we have a lifting of the Frobenius on the affine part of E so that the following diagram commutes:

$$\tilde{\boldsymbol{E}}(\boldsymbol{W_3}(\bar{\boldsymbol{k}})) \xrightarrow{\tilde{\boldsymbol{\phi}}} \tilde{\boldsymbol{E}}^{\sigma}(\boldsymbol{W_3}(\bar{\boldsymbol{k}})) \xrightarrow{\pi \langle \boldsymbol{\gamma} \rangle} E^{\sigma}(\bar{\boldsymbol{k}}) \xrightarrow{\pi \langle \boldsymbol{\gamma} \rangle} E^{\sigma}(\bar{\boldsymbol{k}}) \xrightarrow{\phi} E^{\sigma}(\bar{\boldsymbol{k}})$$

Moreover, any supersingular elliptic curve will yield larger degrees.

Minimal Degree Liftings

Therefore, the notions of *ordinary elliptic curve* and its *canonical lifting* (at least modulo p^3) can be defined strictly from the point of view of minimal degree liftings:

- *E* is ordinary if there is a lifting satisfying the lower bound on the degrees of the lifting map;
- *E* is the canonical lifting of *E* if there is a lifting map satisfying the lower bound.

On the other hand, in this way, these notions can be generalized to higher genus curves, and in a very similar way, one can obtain very similar results for *hyperelliptic* curves!

Mochizuki Liftings

For genus 2 curves (and so hyperelliptic) in characteristic 3, one can have a Mochizuki lifting of the Frobenius if one removes (some) 2 points from the curve. These two points are invariant by the hyperelliptic involution and thus can be put at "infinity".

We then have:

Theorem (F.-Mochizuki)

The notions of "ordinary" and "canonical lifting" (modulo p^2) from minimal degree liftings theory coincide with the ones coming from Mochizuki's theory.

Thus, we were able to give a concrete example of a family of Mochizuki liftings.

We now return to ordinary elliptic curves and their canonical liftings.

If \mathbb{k}^{ord} denotes the set of ordinary *j*-invariants in \mathbb{k} , we have functions $J_i : \mathbb{k}^{ord} \to \mathbb{k}$ such that $(j_0, J_1(j_0), J_2(j_0), \ldots)$ is the *j*-invariant of the canonical lifting of the curve with *j*-invariant $j_0 \in \mathbb{k}^{ord}$.

Mazur's Question (to John Tate)

What kind of functions are these J_n ? Can one say anything about them?

First Computations

Examples:

$$p = 5 \qquad J_1 = 3j_0^3 + j_0^4;$$

$$J_2 = 3j_0^5 + 2j_0^{10} + 2j_0^{13} + 4j_0^{14} + 4j_0^{15} + 4j_0^{16} + j_0^{17} + 4j_0^{18} + j_0^{19} + j_0^{20} + 3j_0^{23} + j_0^{24}.$$
Question: Can these functions all be polynomials?
$$p = 7 \qquad J_1 = 3j_0^5 + 5j_0^6;$$

$$J_2 = (3j_0^{21} + 6j_0^{28} + 3j_0^{33} + 5j_0^{34} + 4j_0^{35} + 2j_0^{36} + 3j_0^{37} + 6j_0^{38} + 3j_0^{39} + 5j_0^{40} + 5j_0^{41} + 5j_0^{42} + 2j_0^{43} + 3j_0^{44} + 6j_0^{45} + 3j_0^{46} + 5j_0^{47} + 5j_0^{48} + 3j_0^{49} + 3j_0^{54} + 5j_0^{55})/(1+j_0^7).$$

Note: If $j_0 = -1$, then E is supersingular, i.e., no canonical lifting.

LI

Functions J_n

Pseudo-Canonical Liftings

(Superficial) Answer to Mazur's Question

For any p, we have that $J_n \in \mathbb{F}_p(X)$.

Tate's Question

Is there a supersingular value of j_0 (for some fixed characteristic p) for which all functions J_n are regular at j_0 . (E.g., $j_0 = 0$ for p = 5 for J_1 and J_2 ?)

This lead us to define:

Definition

The elliptic curve over $W(\mathbb{k})$ given by $j \stackrel{\text{def}}{=} (j_0, J_1(j_0), J_2(j_0), \ldots)$ for such a supersingular j_0 is a pseudo-canonical lifting of the elliptic curve given by j_0 . Tate's question: do they exist at all?

Answer to Tate's Question

Theorem

- Let $j_0 \notin \mathbb{k}^{ord}$ and $p \geq 5$. Then:
 - **1** J_1 is regular at j_0 if, and only if, j_0 is either 0 or 1728.
 - **2** J_2 is regular at j_0 if, and only if, j_0 is 0.
 - **3** For $n \ge 3$, we have that J_n is never regular at j_0 .

For p = 2, 3 (in which case only $j_0 = 0$ is supersingular), we have that J_i is regular at 0 if, and only if, $i \le 11$ for p = 2 or $i \le 5$ for p = 3.

So, (unrestricted) pseudo-canonical liftings don't exits.

Functions J_n

Answer to Mazur's Question

We need some notation: let

$$\operatorname{ss}_p(X) \stackrel{\text{def}}{=} \prod_{j \text{ supers.}} (X - j)$$

(the supersingular polynomial) and

$$S_p(X) \stackrel{\text{def}}{=} \prod_{\substack{j \text{ supers.} \\ j \neq 0,1728}} (X - j).$$

One then has that $ss_p(X), S_p(X) \in \mathbb{F}_p[X]$, and $S_p(0), S_p(1728) \neq 0$. Also, let

$$\iota = \begin{cases} 8, & \text{if } p = 2; \\ 3, & \text{if } p = 3; \\ 2, & \text{if } p = 31; \\ 1, & \text{otherwise.} \end{cases}$$

Br

Answer to Mazur's Question

Then, we have:

Theorem

Let $J_i = F_i/G_i$, with $F_i, G_i \in \mathbb{F}_p[X]$, $(F_i, G_i) = 1$, and G_i monic. Also, let $r_i = (i-1)p^{i-1}$, $s_i = ((i-3)p^i + ip^{i-1})/3$ and $s'_i = \max\{0, s_i\}$. Then, for all $i \in \mathbb{Z}_{>0}$ we have: 1 deg $F_i - \deg G_i = p^i - \iota$; 2 if $p \ge 5$, then $G_i = S_p(X)^{ip^{i-1} + (i-1)p^{i-2}} \cdot H_i$, where $H_i \mid X^{s'_i} \cdot (X - 1728)^{r_i}$; 3 if p = 2, 3, then $G_i = X^{t_i}$, where $t_i \le p^i$.

Also, there is a formula for $J_i(X)$ (which can be simplified if $p \ge 3$) obtained from the *classical modular polynomial*.

Functions J_n

Modular Functions

Assume from now $p \ge 5$. Another perspective: if E/\Bbbk , ordinary, is given by $y_0^2 = x_0^3 + a_0 x_0 + b_0$, and E/W is its canonical lifting and (after some "choice") is given by $y^2 = x^3 + ax + b$, then

$$a = (A_0, A_1, A_2, \ldots),$$

 $b = (B_0, B_1, B_2, \ldots),$

where $A_i, B_i \in \mathbb{k}(a_0, b_0)$. In fact, if \mathcal{H} is the *Hasse invariant* of E (i.e., the coefficient of x_0^{p-1} is $(x_0^3 + a_0x_0 + b_0)^{(p-1)/2}$), then A_i, B_i possibly have poles only at the zeros of \mathcal{H} (or $\Delta = 4a_0^3 + 27b_0^2$).

Question

What are the weights of the A_i 's and B_i 's? What are the order of the poles?

Modular Functions (cont.)

Conjecture

- **1** A_i has weight $4p^i$.
- **2** B_i has weight $6p^i$.
- 3 A_i and B_i have poles of order at most (i-1)p+1 at the zeros of \mathcal{H} . (At least for $i \leq 2$. Not enough data yet.)
- **4** A_i and B_i have no zeros at zeros of Δ .

So, if true, the isomorphism $(a_0, b_0) \leftrightarrow (\lambda_0^4 a_0, \lambda_0^6 b_0)$ corresponds, via canonical liftings, to the isomorphism $(a, b) \leftrightarrow (\lambda^4 a, \lambda^6 b)$, where $\lambda = \tau(\lambda_0) = (\lambda_0, 0, 0, \ldots)$.

Thank you!