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Introduction

This talk discusses generalizations of Witt vectors and how to
recognize what kinds of rings they produce.

Review the Dress and Siebeneicher’s generalization involving
profinite groups.

Review the structure of Witt vectors attached to Zd
p for d ≥ 2.

Give a concrete interpretation of a quotient in the d = 2 case
in terms of W(k)-valued functions on P1(Qp).
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Review of p-typical Witt Vectors

In W(A) = {(a0, a1, . . . ) : ai ∈ A}, the ring operations are

(a0, a1, . . . ) + (b0, b1, . . . ) = (s0(a0; b0), s1(a0, a1; b0, b1), . . .),

(a0, a1, . . . ) · (b0, b1, . . . ) = (m0(a0; b0),m1(a0, a1; b0, b1), . . .),

where the polynomials si and mi are defined via Witt polynomials

Wn(x0, . . . , xn) =
n∑

i=0

pixpn−i

i = xpn

0 + pxpn−1

1 + · · ·+ pnxn

by solving for s = (s0, s1, . . .) and m = (m0,m1, . . .) in equations

Wn(x) + Wn(y) = Wn(s), Wn(x)Wn(y) = Wn(m)

for all n ≥ 0. The si ’s and mi ’s easily have Z[1/p]-coefficients, but
in fact have Z-coefficients (Witt).
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Generalized Witt Vectors using Profinite Groups

The basic construction begins with a family of Witt-like
polynomials associated to any profinite group G (e.g., Zp as
additive group, infinite Galois groups, etc.).

The natural indices of the variables for these polynomials are the
discrete transitive G -sets up to G -set isomorphism. Concretely
these are coset spaces G/H with open H (up to conjugation) and
are called the frame of G and is naturally a partially ordered set.

Example. The discrete transitive Zp-sets are Zp/pnZp for n ≥ 0.
The frame of Zp is like N = {0, 1, 2, . . . } or {1, p, p2, . . . }.

Zp/Zp Zp/pZp Zp/p2Zp Zp/p3Zp Zp/p4Zp
· · ·

More generally, the frames of Zp or Z/pnZ are totally ordered, but
the frame of Z2

p is not totally ordered...
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Visualizing the Frame of Z2
2

The frame of G = Z2
2 is much more intricate than for Z2!

G/2G

G/G

G/K
G/H

G/4G

For pro-p G besides Zp and Z/pnZ, there is more than one (open)
subgroup of index p.
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Defining Generalized Witt Polynomials

For any discrete transitive G -set T , define the T -th Witt
polynomial in Q[. . . , xT , . . .] = Q[x] to be

WT (x) =
∑
U≤T

#MapG (T ,U)x
#T/#U
U = x#T

0 +· · ·+#AutG (T )xT .

This is linear in its last variable xT , as in the classical case.

Therefore given independent variables x = (xT ) and y = (yT ), in
Q[x, y] there are unique polynomial sequences s = (sT (x, y)) and
m = (mT (x, y)) satisfying

WT (x) + WT (y) = WT (s), WT (x)WT (y) = WT (m)

for all discrete transitive G -sets T .
These polynomials sT and mT were defined by Dress and
Siebeneicher (1988), who showed they have Z-coefficients.
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The ring W(A) is WZp(A) (here Zp is an additive group).
Cartier’s “big” Witt vectors are recovered by WẐ(A).
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The Problem with Witt Vectors

Witt vector ring operations are a nightmare to work with explicitly.
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What is WZd
p
(k) when k has characteristic p > 0?

W(k) = WZp(k) is a DVR with maximal ideal (p).

The ring WG (k) with G 6∼= Zp is still local but the maximal ideal

m = {a = (aT )T : a0 = 0}.

One can check that WG (k) is also not a domain and that m 6= (p).

Theorem (M)

If G = Zd
p for d ≥ 2 and k is any field of characteristic p, the

maximal ideal m of WG (k) is not finitely generated. In the case
d = 2, WG (k) is reduced.

There is no concrete interpretation of WG (k) in terms of known
rings; not even for G = Z2

p.
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What is WZ2
p
(k) when k has characteristic p > 0?

There is a natural family of prime ideals in WZ2
p
(k). In the

diagram, we illustrate with p = 2.

G/G

G/2G

G/4G

Level 0

Level 1

Level 2

Projecting
onto these coordinates
is a surjective
homomorphism
WZ2

p
(k)→W(k).

The image is a
domain, so the kernel is
a prime ideal. Each path
along the bottom gives
a different prime ideal
in WZ2

p
(k). Are these all

the prime ideals (besides
the maximal ideal)?
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Interpreting WZ2
p
(k)/J as functions

Set J the ideal of Witt vectors which are zero on the bottom tree
portion of the frame of Z2

p. So WZ2
p
(k)/J is the ring of “Witt

vectors” on the tree:

We can embed WZ2
p
(k)/J into a more ’familiar’ ring. The

boundary of this tree, i.e., the space of all rooted paths.
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Interpreting WZ2
p
(k)/J as functions

The set of all rooted paths in this case is P1(Qp).

P1(Qp)

From a Witt vector a ∈WZ2
p
(k)/J, we can associate a function on

P1(Qp) with values in W (k). To check that this gives an injective
ring homomorphism

Φ: WZ2
p
(k)/J → Fun(P1(Qp),W (k)),

it suffices to compare Witt polynomials. What kinds of functions
do we get?
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A norm on P1(Qp)

For two points in P1(Qp), i.e., rooted paths defined the distance

P1(Qp)

We measure distance between paths by counting number of edges
in the overlap. So |x − y | = p−n where n is the number of edges of
overlap.

This makes P1(Qp) a metric space with diameter 1.
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Interpreting WZ2
p
(k)/J as functions

Φ: WZ2
p
(k)/J → Fun(P1(Qp),W (k))

Now P1(Qp) is a metric space and W(k) the natural metric
induced by its maximal ideal.

Theorem (M, Steinhurst)

The image of Φ is exactly the p−1-Lipschitz functions.

Contracting the maximal ideals consisting of functions vanishing at
a point recovers the primes pC we found before. And some we
didn’t, like using common ultrafilter constructions.

We expect to exploit this to show that dimWZ2
p
(k)/J is infinite.
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didn’t, like using common ultrafilter constructions.

We expect to exploit this to show that dimWZ2
p
(k)/J is infinite.
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Initial vanishing

Counting initial vanishing gives a norm, and hence a metric on
WZ2

p
(k)/J.

If we represent black dots as zero values and green
dots as non-zero values, then

Elements of norm 1
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Initial vanishing

Counting initial vanishing gives a norm, and hence a metric on
WZ2

p
(k)/J. If we represent black dots as zero values and green

dots as non-zero values, then

Elements of norm p−3

This recovers the usual Witt-vector metric on paths.
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Φ is an isometry

Φ: WZ2
p
(k)/J → p−1 − Lip(P1(Qp),W(k))

The initial vanishing norm on WZ2
p
(k)/J makes it into a metric

space.

Giving p−1− Lip(P1(Qp),W(k)) the sup-norm we have that Φ is a
map between metric spaces.

Theorem (M, Steinhurst)

In the initial vanishing norm on WZ2
p
(k)/J and the sup norm on

p−1 − Lip(P1(Qp),W(k)), Φ is an isometry.
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Thank you.
Questions?
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