Witt-Burnside rings attached to Z_p^2 as Lipschitz functions on $P^1(Q_p)$

Lance Edward Miller* - University of Utah

Benjamin Steinhurst - Cornell University

January 10, 2013

Introduction

This talk discusses generalizations of Witt vectors and how to recognize what kinds of rings they produce.

- Review the Dress and Siebeneicher's generalization involving profinite groups.
- Review the structure of Witt vectors attached to \mathbf{Z}_{p}^{d} for $d \geq 2$.
- Give a concrete interpretation of a quotient in the d = 2 case in terms of W(k)-valued functions on P¹(Q_p).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Review of *p*-typical Witt Vectors

In
$$\mathbf{W}(A) = \{(a_0, a_1, \dots) : a_i \in A\}$$
, the ring operations are

$$(a_0, a_1, \dots) + (b_0, b_1, \dots) = (s_0(a_0; b_0), s_1(a_0, a_1; b_0, b_1), \dots),$$

$$(a_0, a_1, \dots) \cdot (b_0, b_1, \dots) = (m_0(a_0; b_0), m_1(a_0, a_1; b_0, b_1), \dots),$$

where the polynomials s_i and m_i are defined via Witt polynomials

$$W_n(x_0,...,x_n) = \sum_{i=0}^n p^i x_i^{p^{n-i}} = x_0^{p^n} + p x_1^{p^{n-1}} + \dots + p^n x_n$$

Review of *p*-typical Witt Vectors

In
$$\mathbf{W}(A) = \{(a_0, a_1, \dots) : a_i \in A\}$$
, the ring operations are
 $(a_0, a_1, \dots) + (b_0, b_1, \dots) = (s_0(a_0; b_0), s_1(a_0, a_1; b_0, b_1), \dots),$

$$(a_0, a_1, \ldots) \cdot (b_0, b_1, \ldots) = (m_0(a_0; b_0), m_1(a_0, a_1; b_0, b_1), \ldots),$$

where the polynomials s_i and m_i are defined via Witt polynomials

$$W_n(x_0,...,x_n) = \sum_{i=0}^n p^i x_i^{p^{n-i}} = x_0^{p^n} + p x_1^{p^{n-1}} + \dots + p^n x_n$$

by solving for $\mathbf{s} = (s_0, s_1, \ldots)$ and $\mathbf{m} = (m_0, m_1, \ldots)$ in equations

$$W_n(\mathbf{x}) + W_n(\mathbf{y}) = W_n(\mathbf{s}), \quad W_n(\mathbf{x})W_n(\mathbf{y}) = W_n(\mathbf{m})$$

for all $n \ge 0$. The s_i 's and m_i 's easily have $\mathbb{Z}[1/p]$ -coefficients, but in fact have Z-coefficients (Witt).

Generalized Witt Vectors using Profinite Groups

The basic construction begins with a family of Witt-like polynomials associated to any profinite group G (e.g., Z_p as additive group, infinite Galois groups, etc.).

Generalized Witt Vectors using Profinite Groups

The basic construction begins with a family of Witt-like polynomials associated to any profinite group G (e.g., Z_p as additive group, infinite Galois groups, etc.).

The natural indices of the variables for these polynomials are the discrete transitive *G*-sets up to *G*-set isomorphism. Concretely these are coset spaces G/H with open H (up to conjugation) and are called the frame of G and is naturally a partially ordered set.

. . .

Generalized Witt Vectors using Profinite Groups

The basic construction begins with a family of Witt-like polynomials associated to any profinite group G (e.g., Z_p as additive group, infinite Galois groups, etc.).

The natural indices of the variables for these polynomials are the discrete transitive *G*-sets up to *G*-set isomorphism. Concretely these are coset spaces G/H with open H (up to conjugation) and are called the frame of G and is naturally a partially ordered set.

Example. The discrete transitive Z_p -sets are $Z_p/p^n Z_p$ for $n \ge 0$. The frame of Z_p is like $N = \{0, 1, 2, ...\}$ or $\{1, p, p^2, ...\}$.

$$\mathbf{Z}_{p}/\mathbf{Z}_{p} \quad \mathbf{Z}_{p}/p\mathbf{Z}_{p} \quad \mathbf{Z}_{p}/p^{2}\mathbf{Z}_{p} \quad \mathbf{Z}_{p}/p^{3}\mathbf{Z}_{p} \quad \mathbf{Z}_{p}/p^{4}\mathbf{Z}_{p}$$

. . .

Generalized Witt Vectors using Profinite Groups

The basic construction begins with a family of Witt-like polynomials associated to any profinite group G (e.g., Z_p as additive group, infinite Galois groups, etc.).

The natural indices of the variables for these polynomials are the discrete transitive *G*-sets up to *G*-set isomorphism. Concretely these are coset spaces G/H with open H (up to conjugation) and are called the frame of G and is naturally a partially ordered set.

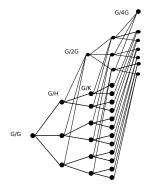
Example. The discrete transitive Z_p -sets are $Z_p/p^n Z_p$ for $n \ge 0$. The frame of Z_p is like $N = \{0, 1, 2, ...\}$ or $\{1, p, p^2, ...\}$.

$$\mathbf{Z}_{p}/\mathbf{Z}_{p} \quad \mathbf{Z}_{p}/p\mathbf{Z}_{p} \quad \mathbf{Z}_{p}/p^{2}\mathbf{Z}_{p} \quad \mathbf{Z}_{p}/p^{3}\mathbf{Z}_{p} \quad \mathbf{Z}_{p}/p^{4}\mathbf{Z}_{p}$$

More generally, the frames of Z_p or $Z/p^n Z$ are totally ordered, but the frame of Z_p^2 is not totally ordered...

Visualizing the Frame of \mathbf{Z}_2^2

The frame of $G = \mathbf{Z}_2^2$ is much more intricate than for $\mathbf{Z}_2!$



For pro- $p \ G$ besides \mathbb{Z}_p and $\mathbb{Z}/p^n\mathbb{Z}$, there is more than one (open) subgroup of index p.

Defining Generalized Witt Polynomials

For any discrete transitive *G*-set *T*, define the *T*-th Witt polynomial in $\mathbf{Q}[\dots, x_T, \dots] = \mathbf{Q}[\mathbf{x}]$ to be

$$W_{\mathcal{T}}(\mathbf{x}) = \sum_{U \leq \mathcal{T}} \# \operatorname{Map}_{G}(\mathcal{T}, U) x_{U}^{\#\mathcal{T}/\#U} = x_{0}^{\#\mathcal{T}} + \dots + \# \operatorname{Aut}_{G}(\mathcal{T}) x_{\mathcal{T}}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

Defining Generalized Witt Polynomials

For any discrete transitive *G*-set *T*, define the *T*-th Witt polynomial in $\mathbf{Q}[\dots, x_T, \dots] = \mathbf{Q}[\mathbf{x}]$ to be

$$W_{\mathcal{T}}(\mathbf{x}) = \sum_{U \leq \mathcal{T}} \# \operatorname{Map}_{G}(\mathcal{T}, U) x_{U}^{\#\mathcal{T}/\#U} = x_{0}^{\#\mathcal{T}} + \dots + \# \operatorname{Aut}_{G}(\mathcal{T}) x_{\mathcal{T}}.$$

This is linear in its last variable x_T , as in the classical case.

Defining Generalized Witt Polynomials

For any discrete transitive *G*-set *T*, define the *T*-th Witt polynomial in $\mathbf{Q}[\dots, x_T, \dots] = \mathbf{Q}[\mathbf{x}]$ to be

$$W_{\mathcal{T}}(\mathbf{x}) = \sum_{U \leq \mathcal{T}} \# \operatorname{Map}_{G}(\mathcal{T}, U) x_{U}^{\#\mathcal{T}/\#U} = x_{0}^{\#\mathcal{T}} + \dots + \# \operatorname{Aut}_{G}(\mathcal{T}) x_{\mathcal{T}}.$$

This is linear in its last variable x_T , as in the classical case.

Therefore given independent variables $\mathbf{x} = (x_T)$ and $\mathbf{y} = (y_T)$, in $\mathbf{Q}[\mathbf{x}, \mathbf{y}]$ there are unique polynomial sequences $\mathbf{s} = (\mathbf{s}_T(\mathbf{x}, \mathbf{y}))$ and $\mathbf{m} = (m_T(\mathbf{x}, \mathbf{y}))$ satisfying

$$\mathcal{W}_{\mathcal{T}}(\mathbf{x}) + \mathcal{W}_{\mathcal{T}}(\mathbf{y}) = \mathcal{W}_{\mathcal{T}}(\mathbf{s}), \hspace{1em} \mathcal{W}_{\mathcal{T}}(\mathbf{x})\mathcal{W}_{\mathcal{T}}(\mathbf{y}) = \mathcal{W}_{\mathcal{T}}(\mathbf{m})$$

for all discrete transitive G-sets T.

< = > = √Q()

Defining Generalized Witt Polynomials

For any discrete transitive *G*-set *T*, define the *T*-th Witt polynomial in $\mathbf{Q}[\dots, x_T, \dots] = \mathbf{Q}[\mathbf{x}]$ to be

$$W_{\mathcal{T}}(\mathbf{x}) = \sum_{U \leq \mathcal{T}} \# \operatorname{Map}_{G}(\mathcal{T}, U) x_{U}^{\#\mathcal{T}/\#U} = x_{0}^{\#\mathcal{T}} + \dots + \# \operatorname{Aut}_{G}(\mathcal{T}) x_{\mathcal{T}}.$$

This is linear in its last variable x_T , as in the classical case.

Therefore given independent variables $\mathbf{x} = (x_T)$ and $\mathbf{y} = (y_T)$, in $\mathbf{Q}[\mathbf{x}, \mathbf{y}]$ there are unique polynomial sequences $\mathbf{s} = (\mathbf{s}_T(\mathbf{x}, \mathbf{y}))$ and $\mathbf{m} = (m_T(\mathbf{x}, \mathbf{y}))$ satisfying

$$W_T(\mathbf{x}) + W_T(\mathbf{y}) = W_T(\mathbf{s}), \ \ W_T(\mathbf{x})W_T(\mathbf{y}) = W_T(\mathbf{m})$$

for all discrete transitive G-sets T.

These polynomials s_T and m_T were defined by Dress and Siebeneicher (1988), who showed they have **Z**-coefficients.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Defining Generalized Witt Vectors

$$W_{\mathcal{T}}(\mathbf{x}) = \sum_{U \leq T} \# \operatorname{Map}_{G}(T, U) x_{U}^{\#T/\#U} = x_{0}^{\#T} + \dots + \# \operatorname{Aut}_{G}(T) x_{T},$$
$$W_{\mathcal{T}}(\mathbf{x}) + W_{\mathcal{T}}(\mathbf{y}) = W_{\mathcal{T}}(\mathbf{s}), \quad W_{\mathcal{T}}(\mathbf{x}) W_{\mathcal{T}}(\mathbf{y}) = W_{\mathcal{T}}(\mathbf{m}).$$

Defining Generalized Witt Vectors

$$W_{\mathcal{T}}(\mathbf{x}) = \sum_{U \leq T} \# \operatorname{Map}_{G}(T, U) x_{U}^{\#T/\#U} = x_{0}^{\#T} + \dots + \# \operatorname{Aut}_{G}(T) x_{T},$$
$$W_{\mathcal{T}}(\mathbf{x}) + W_{\mathcal{T}}(\mathbf{y}) = W_{\mathcal{T}}(\mathbf{s}), \quad W_{\mathcal{T}}(\mathbf{x}) W_{\mathcal{T}}(\mathbf{y}) = W_{\mathcal{T}}(\mathbf{m}).$$

Dress and Siebeneicher defined the ring of generalized Witt vectors $\mathbf{W}_G(A)$ for any commutative ring A as the A-valued sequences $\mathbf{a} = (a_T)$ indexed by the frame of G, with operations

$$\mathbf{a} + \mathbf{b} = (s_T(\mathbf{a}, \mathbf{b})), \ \mathbf{ab} = (m_T(\mathbf{a}, \mathbf{b})).$$

This works for all A since the s_T 's and m_T 's have Z-coefficients.

Defining Generalized Witt Vectors

$$W_{\mathcal{T}}(\mathbf{x}) = \sum_{U \leq T} \# \operatorname{Map}_{G}(T, U) x_{U}^{\#T/\#U} = x_{0}^{\#T} + \dots + \# \operatorname{Aut}_{G}(T) x_{T},$$
$$W_{\mathcal{T}}(\mathbf{x}) + W_{\mathcal{T}}(\mathbf{y}) = W_{\mathcal{T}}(\mathbf{s}), \quad W_{\mathcal{T}}(\mathbf{x}) W_{\mathcal{T}}(\mathbf{y}) = W_{\mathcal{T}}(\mathbf{m}).$$

Dress and Siebeneicher defined the ring of generalized Witt vectors $\mathbf{W}_G(A)$ for any commutative ring A as the A-valued sequences $\mathbf{a} = (a_T)$ indexed by the frame of G, with operations

$$\mathbf{a} + \mathbf{b} = (s_T(\mathbf{a}, \mathbf{b})), \ \mathbf{ab} = (m_T(\mathbf{a}, \mathbf{b})).$$

This works for all A since the s_T 's and m_T 's have Z-coefficients. The ring W(A) is $W_{Z_p}(A)$ (here Z_p is an additive group).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

Defining Generalized Witt Vectors

$$W_{\mathcal{T}}(\mathbf{x}) = \sum_{U \le T} \# \mathsf{Map}_{G}(\mathcal{T}, U) x_{U}^{\#\mathcal{T}/\#\mathcal{U}} = x_{0}^{\#\mathcal{T}} + \dots + \# \mathsf{Aut}_{G}(\mathcal{T}) x_{\mathcal{T}},$$
$$W_{\mathcal{T}}(\mathbf{x}) + W_{\mathcal{T}}(\mathbf{y}) = W_{\mathcal{T}}(\mathbf{s}), \quad W_{\mathcal{T}}(\mathbf{x}) W_{\mathcal{T}}(\mathbf{y}) = W_{\mathcal{T}}(\mathbf{m}).$$

Dress and Siebeneicher defined the ring of generalized Witt vectors $\mathbf{W}_G(A)$ for any commutative ring A as the A-valued sequences $\mathbf{a} = (a_T)$ indexed by the frame of G, with operations

$$\mathbf{a} + \mathbf{b} = (s_T(\mathbf{a}, \mathbf{b})), \ \ \mathbf{ab} = (m_T(\mathbf{a}, \mathbf{b})).$$

This works for all A since the s_T 's and m_T 's have Z-coefficients. The ring $\mathbf{W}(A)$ is $\mathbf{W}_{\mathbf{Z}_p}(A)$ (here \mathbf{Z}_p is an additive group). Cartier's "big" Witt vectors are recovered by $\mathbf{W}_{\widehat{\mathbf{Z}}}(A)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Problem with Witt Vectors

Witt vector ring operations are a nightmare to work with explicitly.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{d}}(k)$ when k has characteristic p > 0?

 $\mathbf{W}(k) = \mathbf{W}_{\mathbf{Z}_p}(k)$ is a DVR with maximal ideal (p).

What is $\mathbf{W}_{\mathbf{Z}_{a}^{d}}(k)$ when k has characteristic p > 0?

 $\mathbf{W}(k) = \mathbf{W}_{\mathbf{Z}_{p}}(k)$ is a DVR with maximal ideal (p).

The ring $\mathbf{W}_G(k)$ with $G \not\cong \mathbf{Z}_p$ is still local but the maximal ideal

$$\mathfrak{m} = \{\mathbf{a} = (a_T)_T \colon a_0 = 0\}.$$

One can check that $\mathbf{W}_{G}(k)$ is also not a domain and that $\mathbf{m} \neq (p)$.

What is $\mathbf{W}_{\mathbf{Z}_{a}^{d}}(k)$ when k has characteristic p > 0?

 $\mathbf{W}(k) = \mathbf{W}_{\mathbf{Z}_{p}}(k)$ is a DVR with maximal ideal (p).

The ring $\mathbf{W}_G(k)$ with $G \not\cong \mathbf{Z}_p$ is still local but the maximal ideal

$$\mathfrak{m} = \{\mathbf{a} = (a_T)_T \colon a_0 = 0\}.$$

One can check that $\mathbf{W}_{G}(k)$ is also not a domain and that $\mathbf{m} \neq (p)$.

Theorem (M)

If $G = \mathbf{Z}_p^d$ for $d \ge 2$ and k is any field of characteristic p, the maximal ideal \mathfrak{m} of $\mathbf{W}_G(k)$ is not finitely generated. In the case d = 2, $\mathbf{W}_G(k)$ is reduced.

What is $\mathbf{W}_{\mathbf{Z}_{a}^{d}}(k)$ when k has characteristic p > 0?

 $\mathbf{W}(k) = \mathbf{W}_{\mathbf{Z}_{p}}(k)$ is a DVR with maximal ideal (p).

The ring $\mathbf{W}_G(k)$ with $G \not\cong \mathbf{Z}_p$ is still local but the maximal ideal

$$\mathfrak{m} = \{\mathbf{a} = (a_T)_T \colon a_0 = 0\}.$$

One can check that $\mathbf{W}_{G}(k)$ is also not a domain and that $\mathbf{m} \neq (p)$.

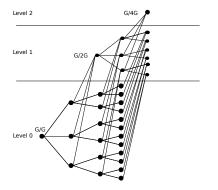
Theorem (M)

If $G = \mathbf{Z}_p^d$ for $d \ge 2$ and k is any field of characteristic p, the maximal ideal \mathfrak{m} of $\mathbf{W}_G(k)$ is not finitely generated. In the case d = 2, $\mathbf{W}_G(k)$ is reduced.

There is no concrete interpretation of $\mathbf{W}_G(k)$ in terms of known rings; not even for $G = \mathbf{Z}_p^2$.

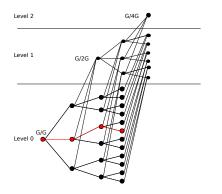
What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic p > 0?

There is a natural family of prime ideals in $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$. In the diagram, we illustrate with p = 2.



What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic p > 0?

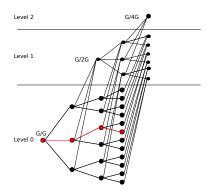
There is a natural family of prime ideals in $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$. In the diagram, we illustrate with p = 2. Choose a level 0 path C.



Projecting onto these coordinates is a surjective homomorphism $W_{Z_p^2}(k) \rightarrow W(k).$

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic p > 0?

There is a natural family of prime ideals in $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k)$. In the diagram, we illustrate with p = 2. Choose a level 0 path C.

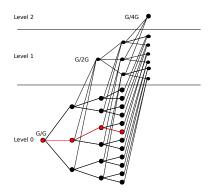


Projecting onto these coordinates is a surjective homomorphism $W_{Z_{p}^{2}}(k) \rightarrow W(k)$. The image is a domain, so the kernel is a prime ideal \mathfrak{p}_{C} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic p > 0?

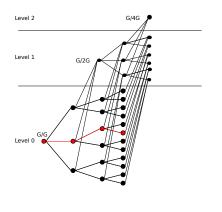
There is a natural family of prime ideals in $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k)$. In the diagram, we illustrate with p = 2. Choose a level 0 path C.



Projecting onto these coordinates is a surjective homomorphism $\mathbf{W}_{\mathbf{Z}_{2}^{2}}(k) \rightarrow \mathbf{W}(k).$ The image is a domain, so the kernel is a prime ideal \mathfrak{p}_C . Each path along the bottom gives a different prime ideal in $\mathbf{W}_{\mathbf{Z}_{n}^{2}}(k)$.

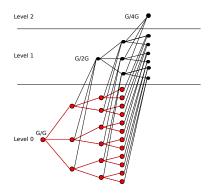
What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic p > 0?

There is a natural family of prime ideals in $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$. In the diagram, we illustrate with p = 2. Choose a level 0 path C.



Projecting onto these coordinates is a surjective homomorphism $\mathbf{W}_{\mathbf{Z}_{2}^{2}}(k) \rightarrow \mathbf{W}(k).$ The image is a domain, so the kernel is a prime ideal \mathfrak{p}_C . Each path along the bottom gives a different prime ideal in $\mathbf{W}_{\mathbf{Z}_{n}^{2}}(k)$. Are these all the prime ideals (besides the maximal ideal)?

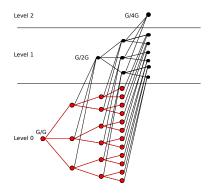
What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic p > 0?



The

intersection of the prime ideals described so far consists of the vectors whose coordinates are zero for any \mathbf{Z}_p^2 -set in level 0.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic p > 0?

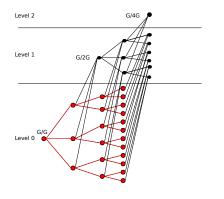


The

intersection of the prime ideals described so far consists of the vectors whose coordinates are zero for any \mathbf{Z}_{p}^{2} -set in level 0. Since the only nilpotent in $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ is **0**, the intersection of *all* prime ideals in $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ is {**0**}.

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic p > 0?



The

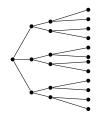
intersection of the prime ideals described so far consists of the vectors whose coordinates are zero for any \mathbf{Z}_{p}^{2} -set in level 0. Since the only nilpotent in $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ is 0, the intersection of all prime ideals in $\mathbf{W}_{\mathbf{Z}_{a}^{2}}(k)$ is $\{0\}$. There must be more prime ideals.

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Interpreting $\mathbf{W}_{\mathbf{Z}_{n}^{2}}(k)/J$ as functions

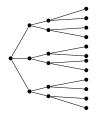
Set *J* the ideal of Witt vectors which are zero on the bottom tree portion of the frame of Z_p^2 . So $W_{Z_p^2}(k)/J$ is the ring of "Witt vectors" on the tree:



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Interpreting $\mathbf{W}_{\mathbf{Z}_{n}^{2}}(k)/J$ as functions

Set *J* the ideal of Witt vectors which are zero on the bottom tree portion of the frame of Z_p^2 . So $W_{Z_p^2}(k)/J$ is the ring of "Witt vectors" on the tree:

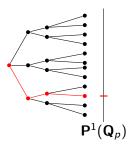


We can embed $\mathbf{W}_{\mathbf{Z}_p^2}(k)/J$ into a more 'familiar' ring. The boundary of this tree, i.e., the space of all rooted paths.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

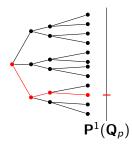
Interpreting $\mathbf{W}_{\mathbf{Z}_p^2}(k)/J$ as functions

The set of all rooted paths in this case is $\mathbf{P}^1(\mathbf{Q}_p)$.



Interpreting $\mathbf{W}_{\mathbf{Z}_p^2}(k)/J$ as functions

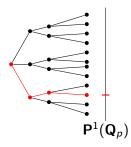
The set of all rooted paths in this case is $\mathbf{P}^1(\mathbf{Q}_p)$.



From a Witt vector $\mathbf{a} \in \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)/J$, we can associate a function on $\mathbf{P}^{1}(\mathbf{Q}_{p})$ with values in W(k).

Interpreting $\mathbf{W}_{\mathbf{Z}_p^2}(k)/J$ as functions

The set of all rooted paths in this case is $\mathbf{P}^1(\mathbf{Q}_p)$.



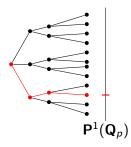
From a Witt vector $\mathbf{a} \in \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)/J$, we can associate a function on $\mathbf{P}^{1}(\mathbf{Q}_{p})$ with values in W(k). To check that this gives an injective ring homomorphism

$$\Phi \colon \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)/J \to \mathsf{Fun}(\mathbf{P}^{1}(\mathbf{Q}_{p}), W(k)),$$

it suffices to compare Witt polynomials.

Interpreting $\mathbf{W}_{\mathbf{Z}_p^2}(k)/J$ as functions

The set of all rooted paths in this case is $\mathbf{P}^1(\mathbf{Q}_p)$.



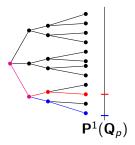
From a Witt vector $\mathbf{a} \in \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)/J$, we can associate a function on $\mathbf{P}^{1}(\mathbf{Q}_{p})$ with values in W(k). To check that this gives an injective ring homomorphism

$$\Phi \colon \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)/J \to \mathsf{Fun}(\mathbf{P}^{1}(\mathbf{Q}_{p}), W(k)),$$

it suffices to compare Witt polynomials. What kinds of functions do we get?

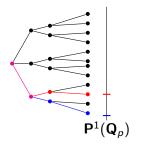
A norm on $\mathbf{P}^1(\mathbf{Q}_p)$

For two points in $\mathbf{P}^1(\mathbf{Q}_p)$, i.e., rooted paths defined the distance



A norm on $\mathbf{P}^1(\mathbf{Q}_p)$

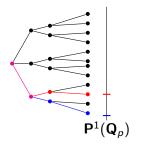
For two points in $\mathbf{P}^1(\mathbf{Q}_p)$, i.e., rooted paths defined the distance



We measure distance between paths by counting number of edges in the overlap. So $|x - y| = p^{-n}$ where *n* is the number of edges of overlap.

A norm on $\mathbf{P}^1(\mathbf{Q}_p)$

For two points in $\mathbf{P}^1(\mathbf{Q}_p)$, i.e., rooted paths defined the distance



We measure distance between paths by counting number of edges in the overlap. So $|x - y| = p^{-n}$ where *n* is the number of edges of overlap.

This makes $\mathbf{P}^1(\mathbf{Q}_p)$ a metric space with diameter 1.

Interpreting $\mathbf{W}_{\mathbf{Z}_p^2}(k)/J$ as functions

$$\Phi \colon \mathbf{W}_{\mathbf{Z}^2_p}(k)/J \to \operatorname{Fun}(\mathbf{P}^1(\mathbf{Q}_p), W(k))$$

Interpreting $\mathbf{W}_{\mathbf{Z}_p^2}(k)/J$ as functions

$$\Phi \colon \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)/J \to \operatorname{Fun}(\mathbf{P}^{1}(\mathbf{Q}_{p}), W(k))$$

Now $P^1(Q_p)$ is a metric space and W(k) the natural metric induced by its maximal ideal.

Functions

- ロ ト - 4 回 ト - 4 □ - 4

Interpreting $\mathbf{W}_{\mathbf{Z}_p^2}(k)/J$ as functions

$$\Phi \colon \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)/J \to \mathsf{Fun}(\mathbf{P}^{1}(\mathbf{Q}_{p}), W(k))$$

Now $\mathbf{P}^1(\mathbf{Q}_p)$ is a metric space and $\mathbf{W}(k)$ the natural metric induced by its maximal ideal.

Theorem (M, Steinhurst)

The image of Φ is exactly the p^{-1} -Lipschitz functions.

Functions

Interpreting $\mathbf{W}_{\mathbf{Z}_p^2}(k)/J$ as functions

$$\Phi \colon \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)/J \to \operatorname{Fun}(\mathbf{P}^{1}(\mathbf{Q}_{p}), W(k))$$

Now $\mathbf{P}^1(\mathbf{Q}_p)$ is a metric space and $\mathbf{W}(k)$ the natural metric induced by its maximal ideal.

Theorem (M, Steinhurst)

The image of Φ is exactly the p^{-1} -Lipschitz functions.

Contracting the maximal ideals consisting of functions vanishing at a point recovers the primes p_C we found before. And some we didn't, like using common ultrafilter constructions.

Interpreting $\mathbf{W}_{\mathbf{Z}_p^2}(k)/J$ as functions

$$\Phi \colon \mathbf{W}_{\mathbf{Z}_p^2}(k)/J \to \mathsf{Fun}(\mathbf{P}^1(\mathbf{Q}_p), W(k))$$

Now $\mathbf{P}^1(\mathbf{Q}_p)$ is a metric space and $\mathbf{W}(k)$ the natural metric induced by its maximal ideal.

Theorem (M, Steinhurst)

The image of Φ is exactly the p^{-1} -Lipschitz functions.

Contracting the maximal ideals consisting of functions vanishing at a point recovers the primes p_C we found before. And some we didn't, like using common ultrafilter constructions.

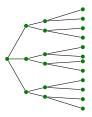
We expect to exploit this to show that dim $\mathbf{W}_{\mathbf{Z}_{2}^{2}}(k)/J$ is infinite.

Initial vanishing

Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}^2_{\rho}}(k)/J.$

Initial vanishing

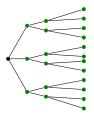
Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}^2_{\rho}}(k)/J$. If we represent black dots as zero values and green dots as non-zero values, then



Elements of norm 1

Initial vanishing

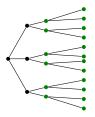
Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}^2_{\rho}}(k)/J$. If we represent black dots as zero values and green dots as non-zero values, then



Elements of norm p^{-1}

Initial vanishing

Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}^2_{\rho}}(k)/J$. If we represent black dots as zero values and green dots as non-zero values, then

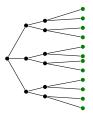


Elements of norm p^{-2}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Initial vanishing

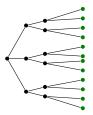
Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}^2_{\rho}}(k)/J$. If we represent black dots as zero values and green dots as non-zero values, then



Elements of norm p^{-3}

Initial vanishing

Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}^2_{\rho}}(k)/J$. If we represent black dots as zero values and green dots as non-zero values, then



Elements of norm p^{-3}

This recovers the usual Witt-vector metric on paths.

Φ is an isometry

$\Phi \colon \mathbf{W}_{\mathbf{Z}_p^2}(k)/J \to p^{-1} - \operatorname{Lip}(\mathbf{P}^1(\mathbf{Q}_p), \mathbf{W}(k))$

Φ is an isometry

$$\Phi \colon \mathbf{W}_{\mathbf{Z}_p^2}(k)/J o p^{-1} - \operatorname{Lip}(\mathbf{P}^1(\mathbf{Q}_p), \mathbf{W}(k))$$

The initial vanishing norm on $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)/J$ makes it into a metric space.

Φ is an isometry

$$\Phi \colon \mathbf{W}_{\mathbf{Z}_p^2}(k)/J \to p^{-1} - \operatorname{Lip}(\mathbf{P}^1(\mathbf{Q}_p), \mathbf{W}(k))$$

The initial vanishing norm on $\mathbf{W}_{\mathbf{Z}_p^2}(k)/J$ makes it into a metric space.

Giving $p^{-1} - \text{Lip}(\mathbf{P}^1(\mathbf{Q}_p), \mathbf{W}(k))$ the sup-norm we have that Φ is a map between metric spaces.

Φ is an isometry

$$\Phi \colon \mathbf{W}_{\mathbf{Z}_p^2}(k)/J \to p^{-1} - \operatorname{Lip}(\mathbf{P}^1(\mathbf{Q}_p), \mathbf{W}(k))$$

The initial vanishing norm on $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)/J$ makes it into a metric space.

Giving $p^{-1} - \text{Lip}(\mathbf{P}^1(\mathbf{Q}_p), \mathbf{W}(k))$ the sup-norm we have that Φ is a map between metric spaces.

Theorem (M, Steinhurst)

In the initial vanishing norm on $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)/J$ and the sup norm on $p^{-1} - Lip(\mathbf{P}^{1}(\mathbf{Q}_{p}), \mathbf{W}(k)), \Phi$ is an isometry.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you. Questions?