Witt-Burnside rings attached to \mathbf{Z}_{p}^{2} as Lipschitz functions on $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$

Lance Edward Miller* - University of Utah

Benjamin Steinhurst - Cornell University

January 10, 2013

Introduction

This talk discusses generalizations of Witt vectors and how to recognize what kinds of rings they produce.

- Review the Dress and Siebeneicher's generalization involving profinite groups.
- Review the structure of Witt vectors attached to \mathbf{Z}_{p}^{d} for $d \geq 2$.
- Give a concrete interpretation of a quotient in the $d=2$ case in terms of $\mathbf{W}(k)$-valued functions on $\mathbf{P}^{\mathbf{1}}\left(\mathbf{Q}_{p}\right)$.

Review of p-typical Witt Vectors

In $\mathbf{W}(A)=\left\{\left(a_{0}, a_{1}, \ldots\right): a_{i} \in A\right\}$, the ring operations are

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots\right)+\left(b_{0}, b_{1}, \ldots\right)=\left(s_{0}\left(a_{0} ; b_{0}\right), s_{1}\left(a_{0}, a_{1} ; b_{0}, b_{1}\right), \ldots\right), \\
& \left(a_{0}, a_{1}, \ldots\right) \cdot\left(b_{0}, b_{1}, \ldots\right)=\left(m_{0}\left(a_{0} ; b_{0}\right), m_{1}\left(a_{0}, a_{1} ; b_{0}, b_{1}\right), \ldots\right),
\end{aligned}
$$

where the polynomials s_{i} and m_{i} are defined via Witt polynomials

$$
W_{n}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n} p^{i} x_{i}^{p^{n-i}}=x_{0}^{p^{n}}+p x_{1}^{p^{n-1}}+\cdots+p^{n} x_{n}
$$

Review of p-typical Witt Vectors

In $\mathbf{W}(A)=\left\{\left(a_{0}, a_{1}, \ldots\right): a_{i} \in A\right\}$, the ring operations are

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots\right)+\left(b_{0}, b_{1}, \ldots\right)=\left(s_{0}\left(a_{0} ; b_{0}\right), s_{1}\left(a_{0}, a_{1} ; b_{0}, b_{1}\right), \ldots\right), \\
& \left(a_{0}, a_{1}, \ldots\right) \cdot\left(b_{0}, b_{1}, \ldots\right)=\left(m_{0}\left(a_{0} ; b_{0}\right), m_{1}\left(a_{0}, a_{1} ; b_{0}, b_{1}\right), \ldots\right),
\end{aligned}
$$

where the polynomials s_{i} and m_{i} are defined via Witt polynomials

$$
W_{n}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n} p^{i} x_{i}^{p^{n-i}}=x_{0}^{p^{n}}+p x_{1}^{p^{n-1}}+\cdots+p^{n} x_{n}
$$

by solving for $\mathbf{s}=\left(s_{0}, s_{1}, \ldots\right)$ and $\mathbf{m}=\left(m_{0}, m_{1}, \ldots\right)$ in equations

$$
W_{n}(\mathbf{x})+W_{n}(\mathbf{y})=W_{n}(\mathbf{s}), \quad W_{n}(\mathbf{x}) W_{n}(\mathbf{y})=W_{n}(\mathbf{m})
$$

for all $n \geq 0$. The s_{i} 's and m_{i} 's easily have $\mathbf{Z}[1 / p]$-coefficients, but in fact have Z-coefficients (Witt).

Generalized Witt Vectors using Profinite Groups

The basic construction begins with a family of Witt-like polynomials associated to any profinite group G (e.g., \mathbf{Z}_{p} as additive group, infinite Galois groups, etc.).

Generalized Witt Vectors using Profinite Groups

The basic construction begins with a family of Witt-like polynomials associated to any profinite group G (e.g., \mathbf{Z}_{p} as additive group, infinite Galois groups, etc.).

The natural indices of the variables for these polynomials are the discrete transitive G-sets up to G-set isomorphism. Concretely these are coset spaces G / H with open H (up to conjugation) and are called the frame of G and is naturally a partially ordered set.

Generalized Witt Vectors using Profinite Groups

The basic construction begins with a family of Witt-like polynomials associated to any profinite group G (e.g., \mathbf{Z}_{p} as additive group, infinite Galois groups, etc.).

The natural indices of the variables for these polynomials are the discrete transitive G-sets up to G-set isomorphism. Concretely these are coset spaces G / H with open H (up to conjugation) and are called the frame of G and is naturally a partially ordered set.

Example. The discrete transitive \mathbf{Z}_{p}-sets are $\mathbf{Z}_{p} / p^{n} \mathbf{Z}_{p}$ for $n \geq 0$. The frame of \mathbf{Z}_{p} is like $\mathbf{N}=\{0,1,2, \ldots\}$ or $\left\{1, p, p^{2}, \ldots\right\}$.

$$
\mathbf{Z}_{p} / \mathbf{Z}_{p} \quad \mathbf{Z}_{p} / p \mathbf{Z}_{p} \quad \mathbf{Z}_{p} / p^{2} \mathbf{Z}_{p} \quad \mathbf{Z}_{p} / p^{3} \mathbf{Z}_{p} \quad \mathbf{Z}_{p} / p^{4} \mathbf{Z}_{p}
$$

Generalized Witt Vectors using Profinite Groups

The basic construction begins with a family of Witt-like polynomials associated to any profinite group G (e.g., \mathbf{Z}_{p} as additive group, infinite Galois groups, etc.).

The natural indices of the variables for these polynomials are the discrete transitive G-sets up to G-set isomorphism. Concretely these are coset spaces G / H with open H (up to conjugation) and are called the frame of G and is naturally a partially ordered set.

Example. The discrete transitive \mathbf{Z}_{p}-sets are $\mathbf{Z}_{p} / p^{n} \mathbf{Z}_{p}$ for $n \geq 0$. The frame of \mathbf{Z}_{p} is like $\mathbf{N}=\{0,1,2, \ldots\}$ or $\left\{1, p, p^{2}, \ldots\right\}$.

$$
\mathbf{Z}_{p} / \mathbf{Z}_{p} \quad \mathbf{Z}_{p} / p \mathbf{Z}_{p} \quad \mathbf{Z}_{p} / p^{2} \mathbf{Z}_{p} \quad \mathbf{Z}_{p} / p^{3} \mathbf{Z}_{p} \quad \mathbf{Z}_{p} / p^{4} \mathbf{Z}_{p}
$$

More generally, the frames of \mathbf{Z}_{p} or $\mathbf{Z} / p^{n} \mathbf{Z}$ are totally ordered, but the frame of \mathbf{Z}_{p}^{2} is not totally ordered...

Visualizing the Frame of \mathbf{Z}_{2}^{2}

The frame of $G=\mathbf{Z}_{2}^{2}$ is much more intricate than for \mathbf{Z}_{2} !

For pro- $p G$ besides \mathbf{Z}_{p} and $\mathbf{Z} / p^{n} \mathbf{Z}$, there is more than one (open) subgroup of index p.

Defining Generalized Witt Polynomials

For any discrete transitive G-set T, define the T-th Witt polynomial in $\mathbf{Q}\left[\ldots, x_{T}, \ldots\right]=\mathbf{Q}[\mathbf{x}]$ to be $W_{T}(\mathbf{x})=\sum_{U \leq T} \# \operatorname{Map}_{G}(T, U) x_{U}^{\# T / \# U}=x_{0}^{\# T}+\cdots+\# \operatorname{Aut}_{G}(T) x_{T}$.

Defining Generalized Witt Polynomials

For any discrete transitive G-set T, define the T-th Witt polynomial in $\mathbf{Q}\left[\ldots, x_{T}, \ldots\right]=\mathbf{Q}[\mathbf{x}]$ to be

$$
W_{T}(\mathbf{x})=\sum_{U \leq T} \# \operatorname{Map}_{G}(T, U) x_{U}^{\# T / \# U}=x_{0}^{\# T}+\cdots+\# \operatorname{Aut}_{G}(T) x_{T}
$$

This is linear in its last variable x_{T}, as in the classical case.

Defining Generalized Witt Polynomials

For any discrete transitive G-set T, define the T-th Witt polynomial in $\mathbf{Q}\left[\ldots, x_{T}, \ldots\right]=\mathbf{Q}[\mathbf{x}]$ to be

$$
W_{T}(\mathbf{x})=\sum_{U \leq T} \# \operatorname{Map}_{G}(T, U) x_{U}^{\# T / \# U}=x_{0}^{\# T}+\cdots+\# \operatorname{Aut}_{G}(T) x_{T} .
$$

This is linear in its last variable x_{T}, as in the classical case.

Therefore given independent variables $\mathbf{x}=\left(x_{T}\right)$ and $\mathbf{y}=\left(y_{T}\right)$, in $\mathbf{Q}[\mathbf{x}, \mathbf{y}]$ there are unique polynomial sequences $\mathbf{s}=\left(s_{T}(\mathbf{x}, \mathbf{y})\right)$ and $\mathbf{m}=\left(m_{T}(\mathbf{x}, \mathbf{y})\right)$ satisfying

$$
W_{T}(\mathbf{x})+W_{T}(\mathbf{y})=W_{T}(\mathbf{s}), \quad W_{T}(\mathbf{x}) W_{T}(\mathbf{y})=W_{T}(\mathbf{m})
$$

for all discrete transitive G-sets T.

Defining Generalized Witt Polynomials

For any discrete transitive G-set T, define the T-th Witt polynomial in $\mathbf{Q}\left[\ldots, x_{T}, \ldots\right]=\mathbf{Q}[\mathbf{x}]$ to be

$$
W_{T}(\mathbf{x})=\sum_{U \leq T} \# \operatorname{Map}_{G}(T, U) x_{U}^{\# T / \# U}=x_{0}^{\# T}+\cdots+\# \operatorname{Aut}_{G}(T) x_{T}
$$

This is linear in its last variable x_{T}, as in the classical case.

Therefore given independent variables $\mathbf{x}=\left(x_{T}\right)$ and $\mathbf{y}=\left(y_{T}\right)$, in $\mathbf{Q}[\mathbf{x}, \mathbf{y}]$ there are unique polynomial sequences $\mathbf{s}=\left(s_{T}(\mathbf{x}, \mathbf{y})\right)$ and $\mathbf{m}=\left(m_{T}(\mathbf{x}, \mathbf{y})\right)$ satisfying

$$
W_{T}(\mathbf{x})+W_{T}(\mathbf{y})=W_{T}(\mathbf{s}), \quad W_{T}(\mathbf{x}) W_{T}(\mathbf{y})=W_{T}(\mathbf{m})
$$

for all discrete transitive G-sets T.
These polynomials s_{T} and m_{T} were defined by Dress and Siebeneicher (1988), who showed they have Z-coefficients.

Defining Generalized Witt Vectors

$$
\begin{gathered}
W_{T}(\mathbf{x})=\sum_{U \leq T} \# \operatorname{Map}_{G}(T, U) x_{U}^{\# T / \# U}=x_{0}^{\# T}+\cdots+\# \operatorname{Aut}_{G}(T) x_{T} \\
W_{T}(\mathbf{x})+W_{T}(\mathbf{y})=W_{T}(\mathbf{s}), \quad W_{T}(\mathbf{x}) W_{T}(\mathbf{y})=W_{T}(\mathbf{m})
\end{gathered}
$$

Defining Generalized Witt Vectors

$$
\begin{gathered}
W_{T}(\mathbf{x})=\sum_{U \leq T} \# \operatorname{Map}_{G}(T, U) x_{U}^{\# T / \# U}=x_{0}^{\# T}+\cdots+\# \operatorname{Aut}_{G}(T) x_{T} \\
W_{T}(\mathbf{x})+W_{T}(\mathbf{y})=W_{T}(\mathbf{s}), \quad W_{T}(\mathbf{x}) W_{T}(\mathbf{y})=W_{T}(\mathbf{m})
\end{gathered}
$$

Dress and Siebeneicher defined the ring of generalized Witt vectors $\mathbf{W}_{G}(A)$ for any commutative ring A as the A-valued sequences $\mathbf{a}=\left(a_{T}\right)$ indexed by the frame of G, with operations

$$
\mathbf{a}+\mathbf{b}=\left(s_{T}(\mathbf{a}, \mathbf{b})\right), \quad \mathbf{a b}=\left(m_{T}(\mathbf{a}, \mathbf{b})\right) .
$$

This works for all A since the s_{T} 's and m_{T} 's have \mathbf{Z}-coefficients.

Defining Generalized Witt Vectors

$$
\begin{gathered}
W_{T}(\mathbf{x})=\sum_{U \leq T} \# \operatorname{Map}_{G}(T, U) x_{U}^{\# T / \# U}=x_{0}^{\# T}+\cdots+\# \operatorname{Aut}_{G}(T) x_{T}, \\
W_{T}(\mathbf{x})+W_{T}(\mathbf{y})=W_{T}(\mathbf{s}), \quad W_{T}(\mathbf{x}) W_{T}(\mathbf{y})=W_{T}(\mathbf{m}) .
\end{gathered}
$$

Dress and Siebeneicher defined the ring of generalized Witt vectors $\mathbf{W}_{G}(A)$ for any commutative ring A as the A-valued sequences $\mathbf{a}=\left(a_{T}\right)$ indexed by the frame of G, with operations

$$
\mathbf{a}+\mathbf{b}=\left(s_{T}(\mathbf{a}, \mathbf{b})\right), \quad \mathbf{a b}=\left(m_{T}(\mathbf{a}, \mathbf{b})\right) .
$$

This works for all A since the s_{T} 's and m_{T} 's have \mathbf{Z}-coefficients. The ring $\mathbf{W}(A)$ is $\mathbf{W}_{\mathbf{Z}_{p}}(A)$ (here \mathbf{Z}_{p} is an additive group).

Defining Generalized Witt Vectors

$$
\begin{gathered}
W_{T}(\mathbf{x})=\sum_{U \leq T} \# \operatorname{Map}_{G}(T, U) x_{U}^{\# T / \# U}=x_{0}^{\# T}+\cdots+\# \operatorname{Aut}_{G}(T) x_{T}, \\
W_{T}(\mathbf{x})+W_{T}(\mathbf{y})=W_{T}(\mathbf{s}), \quad W_{T}(\mathbf{x}) W_{T}(\mathbf{y})=W_{T}(\mathbf{m}) .
\end{gathered}
$$

Dress and Siebeneicher defined the ring of generalized Witt vectors $\mathbf{W}_{G}(A)$ for any commutative ring A as the A-valued sequences $\mathbf{a}=\left(a_{T}\right)$ indexed by the frame of G, with operations

$$
\mathbf{a}+\mathbf{b}=\left(s_{T}(\mathbf{a}, \mathbf{b})\right), \quad \mathbf{a b}=\left(m_{T}(\mathbf{a}, \mathbf{b})\right) .
$$

This works for all A since the s_{T} 's and m_{T} 's have \mathbf{Z}-coefficients. The ring $\mathbf{W}(A)$ is $\mathbf{W}_{\mathbf{Z}_{p}}(A)$ (here \mathbf{Z}_{p} is an additive group). Cartier's "big" Witt vectors are recovered by $\mathbf{W}_{\widehat{\mathbf{z}}}(A)$.

The Problem with Witt Vectors

Witt vector ring operations are a nightmare to work with explicitly.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{d}}(k)$ when k has characteristic $p>0$?

$\mathbf{W}(k)=\mathbf{W}_{\mathbf{Z}_{\rho}}(k)$ is a DVR with maximal ideal (p).

What is $\mathbf{W}_{\mathbf{Z}_{p}^{d}}(k)$ when k has characteristic $p>0$?

$\mathbf{W}(k)=\mathbf{W}_{\mathbf{Z}_{p}}(k)$ is a DVR with maximal ideal (p).
The ring $\mathbf{W}_{G}(k)$ with $G \neq \mathbf{Z}_{p}$ is still local but the maximal ideal

$$
\mathfrak{m}=\left\{\mathbf{a}=\left(a_{T}\right)_{T}: a_{0}=0\right\} .
$$

One can check that $\mathbf{W}_{G}(k)$ is also not a domain and that $\mathbf{m} \neq(p)$.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{d}}(k)$ when k has characteristic $p>0$?

$\mathbf{W}(k)=\mathbf{W}_{\mathbf{Z}_{p}}(k)$ is a DVR with maximal ideal (p).
The ring $\mathbf{W}_{G}(k)$ with $G \not \approx \mathbf{Z}_{p}$ is still local but the maximal ideal

$$
\mathfrak{m}=\left\{\mathbf{a}=\left(a_{T}\right)_{T}: a_{0}=0\right\} .
$$

One can check that $\mathbf{W}_{G}(k)$ is also not a domain and that $\mathbf{m} \neq(p)$.

Theorem (M)

If $G=\mathbf{Z}_{p}^{d}$ for $d \geq 2$ and k is any field of characteristic p, the maximal ideal \mathfrak{m} of $\mathbf{W}_{G}(k)$ is not finitely generated. In the case $d=2, \mathbf{W}_{G}(k)$ is reduced.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{d}}(k)$ when k has characteristic $p>0$?

$\mathbf{W}(k)=\mathbf{W}_{\mathbf{Z}_{p}}(k)$ is a DVR with maximal ideal (p).
The ring $\mathbf{W}_{G}(k)$ with $G \not \equiv \mathbf{Z}_{p}$ is still local but the maximal ideal

$$
\mathfrak{m}=\left\{\mathbf{a}=\left(a_{T}\right)_{T}: a_{0}=0\right\} .
$$

One can check that $\mathbf{W}_{G}(k)$ is also not a domain and that $\mathbf{m} \neq(p)$.

Theorem (M)

If $G=\mathbf{Z}_{p}^{d}$ for $d \geq 2$ and k is any field of characteristic p, the maximal ideal \mathfrak{m} of $\mathbf{W}_{G}(k)$ is not finitely generated. In the case $d=2, \mathbf{W}_{G}(k)$ is reduced.

There is no concrete interpretation of $\mathbf{W}_{G}(k)$ in terms of known rings; not even for $G=\mathbf{Z}_{p}^{2}$.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic $p>0$?

There is a natural family of prime ideals in $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k)$. In the diagram, we illustrate with $p=2$.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic $p>0$?

There is a natural family of prime ideals in $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k)$. In the diagram, we illustrate with $p=2$. Choose a level 0 path C.

Projecting
onto these coordinates
is a surjective homomorphism
$\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) \rightarrow \mathbf{W}(k)$.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic $p>0$?

There is a natural family of prime ideals in $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k)$. In the diagram, we illustrate with $p=2$. Choose a level 0 path C.

Projecting
onto these coordinates is a surjective homomorphism

$$
\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) \rightarrow \mathbf{W}(k) .
$$

The image is a domain, so the kernel is a prime ideal \mathfrak{p}_{c}.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic $p>0$?

There is a natural family of prime ideals in $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k)$. In the diagram, we illustrate with $p=2$. Choose a level 0 path C.

Projecting
onto these coordinates is a surjective homomorphism
$\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) \rightarrow \mathbf{W}(k)$.
The image is a domain, so the kernel is a prime ideal \mathfrak{p}_{C}. Each path along the bottom gives a different prime ideal in $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k)$.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic $p>0$?

There is a natural family of prime ideals in $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k)$. In the diagram, we illustrate with $p=2$. Choose a level 0 path C.

Projecting
onto these coordinates is a surjective homomorphism
$\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) \rightarrow \mathbf{W}(k)$.
The image is a domain, so the kernel is a prime ideal p_{C}. Each path along the bottom gives a different prime ideal in $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k)$. Are these all the prime ideals (besides the maximal ideal)?

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic $p>0$?

The intersection of the prime ideals described so far consists of the vectors whose coordinates are zero for any \mathbf{Z}_{p}^{2}-set in level 0.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic $p>0$?

The intersection of the prime ideals described so far consists of the vectors whose coordinates are zero for any \mathbf{Z}_{p}^{2}-set in level 0 . Since the only nilpotent in $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ is $\mathbf{0}$, the intersection of all prime ideals in $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ is $\{\mathbf{0}\}$.

What is $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ when k has characteristic $p>0$?

The intersection of the prime ideals described so far consists of the vectors whose coordinates are zero for any \mathbf{Z}_{p}^{2}-set in level 0 . Since the only nilpotent in $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ is $\mathbf{0}$, the intersection of all prime ideals in $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k)$ is $\{\mathbf{0}\}$. There must be more prime ideals.

Interpreting $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ as functions

Set J the ideal of Witt vectors which are zero on the bottom tree portion of the frame of \mathbf{Z}_{p}^{2}. So $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ is the ring of "Witt vectors" on the tree:

Interpreting $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ as functions

Set J the ideal of Witt vectors which are zero on the bottom tree portion of the frame of \mathbf{Z}_{p}^{2}. So $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ is the ring of "Witt vectors" on the tree:

We can embed $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ into a more 'familiar' ring. The boundary of this tree, i.e., the space of all rooted paths.

Interpreting $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ as functions

The set of all rooted paths in this case is $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$.

Interpreting $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ as functions

The set of all rooted paths in this case is $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$.

From a Witt vector $\mathbf{a} \in \mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) / J$, we can associate a function on $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$ with values in $W(k)$.

Interpreting $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ as functions

The set of all rooted paths in this case is $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$.

From a Witt vector $\mathbf{a} \in \mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) / J$, we can associate a function on $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$ with values in $W(k)$. To check that this gives an injective ring homomorphism

$$
\Phi: \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J \rightarrow \operatorname{Fun}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), W(k)\right)
$$

it suffices to compare Witt polynomials.

Interpreting $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ as functions

The set of all rooted paths in this case is $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$.

From a Witt vector $\mathbf{a} \in \mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) / J$, we can associate a function on $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$ with values in $W(k)$. To check that this gives an injective ring homomorphism

$$
\Phi: \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J \rightarrow \operatorname{Fun}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), W(k)\right)
$$

it suffices to compare Witt polynomials. What kinds of functions do we get?

A norm on $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$

For two points in $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$, i.e., rooted paths defined the distance

A norm on $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$

For two points in $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$, i.e., rooted paths defined the distance

We measure distance between paths by counting number of edges in the overlap. So $|x-y|=p^{-n}$ where n is the number of edges of overlap.

A norm on $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$

For two points in $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$, i.e., rooted paths defined the distance

We measure distance between paths by counting number of edges in the overlap. So $|x-y|=p^{-n}$ where n is the number of edges of overlap.

This makes $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$ a metric space with diameter 1.

Interpreting $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ as functions

$$
\Phi: \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J \rightarrow \operatorname{Fun}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), W(k)\right)
$$

Interpreting $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ as functions

$$
\Phi: \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J \rightarrow \operatorname{Fun}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), W(k)\right)
$$

Now $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$ is a metric space and $\mathbf{W}(k)$ the natural metric induced by its maximal ideal.

Interpreting $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ as functions

$$
\Phi: \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J \rightarrow \operatorname{Fun}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), W(k)\right)
$$

Now $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$ is a metric space and $\mathbf{W}(k)$ the natural metric induced by its maximal ideal.

Theorem (M, Steinhurst)

The image of Φ is exactly the p^{-1}-Lipschitz functions.

Interpreting $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ as functions

$$
\Phi: \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J \rightarrow \operatorname{Fun}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), W(k)\right)
$$

Now $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$ is a metric space and $\mathbf{W}(k)$ the natural metric induced by its maximal ideal.

Theorem (M , Steinhurst)

The image of Φ is exactly the p^{-1}-Lipschitz functions.

Contracting the maximal ideals consisting of functions vanishing at a point recovers the primes \mathfrak{p}_{C} we found before. And some we didn't, like using common ultrafilter constructions.

Interpreting $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ as functions

$$
\Phi: \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J \rightarrow \operatorname{Fun}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), W(k)\right)
$$

Now $\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$ is a metric space and $\mathbf{W}(k)$ the natural metric induced by its maximal ideal.

Theorem (M, Steinhurst)

The image of Φ is exactly the p^{-1}-Lipschitz functions.

Contracting the maximal ideals consisting of functions vanishing at a point recovers the primes $\mathfrak{p c}$ we found before. And some we didn't, like using common ultrafilter constructions.

We expect to exploit this to show that $\operatorname{dim} \mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) / J$ is infinite.

Initial vanishing

Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) / J$.

Initial vanishing

Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) / J$. If we represent black dots as zero values and green dots as non-zero values, then

Elements of norm 1

Initial vanishing

Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) / J$. If we represent black dots as zero values and green dots as non-zero values, then

Elements of norm p^{-1}

Initial vanishing

Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) / J$. If we represent black dots as zero values and green dots as non-zero values, then

Elements of norm p^{-2}

Initial vanishing

Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) / J$. If we represent black dots as zero values and green dots as non-zero values, then

Elements of norm p^{-3}

Initial vanishing

Counting initial vanishing gives a norm, and hence a metric on $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) / J$. If we represent black dots as zero values and green dots as non-zero values, then

Elements of norm p^{-3}
This recovers the usual Witt-vector metric on paths.

Φ is an isometry

$$
\Phi: \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J \rightarrow p^{-1}-\operatorname{Lip}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), \mathbf{W}(k)\right)
$$

Φ is an isometry

$$
\Phi: \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J \rightarrow p^{-1}-\operatorname{Lip}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), \mathbf{W}(k)\right)
$$

The initial vanishing norm on $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ makes it into a metric space.

Φ is an isometry

$$
\Phi: \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J \rightarrow p^{-1}-\operatorname{Lip}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), \mathbf{W}(k)\right)
$$

The initial vanishing norm on $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ makes it into a metric space.

Giving $p^{-1}-\operatorname{Lip}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), \mathbf{W}(k)\right)$ the sup-norm we have that Φ is a map between metric spaces.

Φ is an isometry

$$
\Phi: \mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J \rightarrow p^{-1}-\operatorname{Lip}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), \mathbf{W}(k)\right)
$$

The initial vanishing norm on $\mathbf{W}_{\mathbf{Z}_{\rho}^{2}}(k) / J$ makes it into a metric space.

Giving $p^{-1}-\operatorname{Lip}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), \mathbf{W}(k)\right)$ the sup-norm we have that Φ is a map between metric spaces.

Theorem (M, Steinhurst)

In the initial vanishing norm on $\mathbf{W}_{\mathbf{Z}_{p}^{2}}(k) / J$ and the sup norm on $p^{-1}-\operatorname{Lip}\left(\mathbf{P}^{1}\left(\mathbf{Q}_{p}\right), \mathbf{W}(k)\right), \Phi$ is an isometry.

Thank you. Questions?

