Overconvergent de Rham-Witt Cohomology for Algebraic Stacks

David Zureick-Brown (Emory University) Christopher Davis (UC Irvine)

Slides available at http://www.mathcs.emory.edu/~dzb/slides/

2013 Joint Math Meetings Special Session on Witt Vectors, Liftings and Decent San Diego, CA

January 10, 2013

Weil Conjectures

Throughout, p is a prime and $q = p^n$.

Definition

The **zeta function** of a variety X over \mathbb{F}_q is the series

$$\zeta_X(T) = \exp\left(\sum_{n=1}^\infty \# X(\mathbb{F}_{q^n}) \frac{T^n}{n}\right)$$

Rationality: For X smooth and proper of dimension d

$$\zeta_X(T) = \frac{P_1(T) \cdots P_{2d-1}(T)}{P_0(T) \cdots P_{2d}(T)}$$

Cohomological description: For any Weil cohomology H^i ,

$$P_i(T) = \det(1 - T\operatorname{Frob}_q, H^i(X)).$$

Definition

The **zeta function** of a variety X over \mathbb{F}_q is the series

$$\zeta_X(T) = \exp\left(\sum_{n=1}^\infty \# X(\mathbb{F}_{q^n}) \frac{T^n}{n}\right)$$

Consequences for point counting:

$$\#X(\mathbb{F}_{q^n}) = \sum_{r=0}^{2d} (-1)^r \sum_{i=1}^{b_r} \alpha_{i,r}^n$$

Riemann hypothesis (Deligne):

 $P_i(T) \in 1 + T\mathbb{Z}[T]$, and the \mathbb{C} -roots $\alpha_{i,r}$ of $P_i(T)$ have norm $q^{i/2}$.

Fact

For a prime p, the condition that two proper varieties X and X' over \mathbb{Z}_p with good reduction at p have the same reduction at p implies that their Betti numbers agree.

Explanation

$$H^i_{\operatorname{cris}}(X_p/\mathbb{Z}_p)\cong H^i_{\operatorname{dR}}(X,\mathbb{Z}_p)$$

Newton above Hodge

- **1** The **Newton Polygon** of X is the lower converx hull of $(i, v_p(a_i))$.
- The Hodge Polygon of X is the polygon whose slope i segment has width

$$h^{i,\dim(X)-i} := H^i(X, \Omega_X^{\dim(X)-i}).$$

Solution Example: *E* supersingular elliptic curve.

Modern:

(Étale)	$H^i_{ ext{et}}(\overline{X},\mathbb{Q}_\ell)$
(Crystalline)	$H^i_{ m cris}(X/W)$
(Rigid/overconvergent)	$H^i_{rig}(X)$

Variants, preludes, and complements:

(Monsky-Washnitzer)	$H^i_{MW}(X)$
(de Rham-Witt)	$H^i(X,W\Omega^{ullet}_X)$
(overconvergent dRW)	$H^i(X,W^\dagger\Omega^ullet_X)$

Let X be a smooth variety over \mathbb{F}_q .

Theorem (Illusie, 1975)

There exists a complex $W\Omega^{\bullet}_X$ of sheaves on the Zariski site of X whose (hyper)cohomology computes the crystalline cohomology of X.

Main points

- Sheaf cohomology on Zariski rather than the crystalline site.
- Omplex is independent of choices (compare with Monsky-Washnitzer).
- Somewhat explicit.

Let X be a smooth variety over \mathbb{F}_q .

Theorem (Illusie, 1975)

There exists a complex $W\Omega^{\bullet}_X$ of sheaves on the Zariski site of X whose (hyper)cohomology computes the crystalline cohomology of X.

- Applications easy proofs of
 - Finite generation.
 - O Torsion-free case of Newton above Hodge
- Generalizations
 - Langer-Zink (relative case).
 - Ø Hesselholt (big Witt vectors).

Definition of $W\Omega^{\bullet}_X$

- It is a particular quotient of $\Omega^{\bullet}_{W(X)/W(\mathbb{F}_p)}$.
- **Recall**: if A is a perfect ring of char p,

$$W(A) = \prod A \ni \sum a_i p^i \ (a_i \in A)$$

What is W(k[x])?

•
$$W(k[x]) \subset W(k[x]^{\text{perf}}) \ni \sum_{k \in \mathbb{Z}[1/p]} a_k x^k$$

- 3 $f = \sum_{k \in \mathbb{Z}[1/p]} a_k x^k \in W(k[x])$ if f is V-adically convergent, i.e.,
- $v_p(a_k k) \geq 0.$

• (I.e.,
$$V(x) = px^{\frac{1}{p}} \in W(k[x])$$
, but $x^{\frac{1}{p}} \notin W(k[x])$.)

For X a general scheme (or stack), one can glue this construction.
WΩ[•]_X is an initial V-pro-complex.

Theorem (Davis, Langer, and Zink)

There is a subcomplex

 $W^{\dagger}\Omega^{ullet}_X\subset W\Omega^{ullet}_X$

such that if X is a smooth scheme, $H^i(X, W^{\dagger}\Omega^{\bullet}_X) \otimes \mathbb{Q} \cong H^i_{rig}(X)$.

Note well:

- Left hand side is Zariski cohomology.
- (Right hand side is cohomology of a complex on an associated rigid space.)
- **3** The complex $W^{\dagger}\Omega^{\bullet}_{X}$ is **independent of choices** and functorial.

Étale Cohomology for stacks

$$#B\mathbb{G}_m(\mathbb{F}_p) = \sum_{x \in |B\mathbb{G}_m(\mathbb{F}_p)|} \frac{1}{\#\operatorname{Aut}_x(\mathbb{F}_p)} = \frac{1}{p-1}$$
$$= \sum_{i=-\infty}^{i=\infty} (-1)^i \operatorname{Tr} \operatorname{Frob} H^i_{c,\text{\'et}}(B\mathbb{G}_m, \overline{\mathbb{Q}_\ell})$$
$$= \sum_{i=1}^{\infty} (-1)^2 p^{-i} = \frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \cdots$$

Example

Étale cohomology and Weil conjectures for stacks are used in Ngô's proof of the fundamental lemma.

David Zureick-Brown (Emory)

Overconvergent dRW for Stacks

- Book by Martin Olsson "Crystalline cohomology of algebraic stacks and Hyodo-Kato cohomology".
- Main application new proof of C_{st} conjecture in p-adic Hodge theory.
- 6 Key insight –

$$H^{i}_{log-cris}(X, M) \cong H^{i}_{cris}(\mathcal{L}og_{(X,M)}).$$

 One technical ingredient – generalizations of de Rham-Witt complex to stacks. (Needed, e.g., to prove finiteness.) Original motivation: **Geometric Langlands** for $GL_n(\mathbb{F}_p(C))$:

- Lafforgue constructs a 'compactified moduli stack of shtukas' X (actually a compactification of a stratification of a moduli stack of shtukas).
- The *l*-adic étale cohomology of étale sheaves on *X* realize a Langlands correspondence between certain Galois and automorphic representations.

Other motivation: applications to log-rigid cohomology.

Theorem (ZB, thesis)

- Definition of rigid cohomology for stacks (via le Stum's overconvergent site)
- ② Define variants with supports in a closed subscheme,
- **show they agree** with the classical constructions.
- **Obligation Cohomological descent** on the overconvergent site.

In progress

Duality.

- Ompactly supported cohomology.
- 3 Full Weil formalism.
- Applications.

Theorem (Davis-ZB)

Let \mathcal{X} be a smooth Artin stack of finite type over \mathbb{F}_q . Then there exists a functorial complex $W^{\dagger}\Omega^{\bullet}_{\mathcal{X}}$ whose cohomology agrees with the rigid cohomology of \mathcal{X} .

Theorem

Let X be a smooth affine scheme over \mathbb{F}_q . Then the etale cohomology $H^i_{\acute{e}t}(X, W^{\dagger}\Omega^j_X) = 0$ for i > 0.

Main technical detail

In the classical case, once can write

$$W\Omega^i = \varprojlim_n W_n\Omega^i;$$

the sheaves $W_n \Omega^i$ are coherent. In the overconvergent case,

$$W^{\dagger}\Omega^{i} = \varinjlim_{\epsilon} W^{\epsilon}\Omega^{i}.$$

Tools used in the proof

- Limit Čech cohomology.
- Opological (in the Grothendieck sense) unwinding lemmas.
- Structure theorem for étale morphisms.
- Brutal direct computations.