Arithmetic Kolchin Irreducibility

Taylor Dupuy

(with James Freitag and Lance E. Miller)

Kolchin

X / \mathbf{C} irreducible $\Longrightarrow J_{\infty}(X)$ irreducible (singular)

Let A be a \mathbf{C}-algebra X variety over \mathbf{C}

$$
\begin{aligned}
J_{n}(X), J_{\infty}(X) & =\text { new varieties over } \mathbf{C} \\
& =\text { higher order tangent spaces }
\end{aligned}
$$

$$
\begin{gathered}
J_{n}(X)(A)=X\left(A[T] /\left(t^{n+1}\right)\right) \\
J_{\infty}(X)(A)=X(A[[T]])
\end{gathered}
$$

Gillet, Mustata, de Fernex, Loeser-Sebag, Kolchin, NicaiseSebag, Ishii-Kollar, (Chambert-Loir)-Nicaise-Sebag

Kolchin

$$
\begin{aligned}
& X / \mathbf{C} \text { irreducible } \Longrightarrow J_{\infty}(X) \text { irreducible } \\
& \text { (singular) }
\end{aligned}
$$

Gillet, Mustata, de Fernex, Loeser-Sebag, Kolchin, NicaiseSebag, Ishii-Kollar, (Chambert-Loir)-Nicaise-Sebag

Example I.

$$
J_{1}(X)
$$

$$
X
$$

Example I.

$$
J_{1}(X)
$$

Example 2. $\quad X: x^{4}+y^{4}+z^{4}=0$

$$
\begin{gathered}
\text { expected dimension of } J^{3}(X)=2 \cdot 4=8 \\
\text { dimension above }(0,0,0)=9
\end{gathered}
$$

proof:

$$
\begin{aligned}
& J_{3}(X)=\text { plug in } \mathbf{C}[t] /\left(t^{4}\right) \text { valued points } \\
& x=x_{0}+x_{1} t+x_{2} t^{2}+x_{3} t^{3} \\
& \bmod t^{4} \\
& y=y_{0}+y_{1} t+y_{2} t^{2}+y_{3} t^{3} \quad \bmod t^{4} \\
& z=z_{0}+z_{1} t+z_{2} t^{3}+z_{3} t^{3} \\
& \bmod t^{4}
\end{aligned}
$$

Example 2. $\quad X: x^{4}+y^{4}+z^{4}=0$

$$
\begin{gathered}
\text { expected dimension of } J^{3}(X)=2 \cdot 4=8 \\
\text { dimension above }(0,0,0)=9
\end{gathered}
$$

proof:

$$
\begin{aligned}
& J_{3}(X)=\text { plug in } \mathbf{C}[t] /\left(t^{4}\right) \text { valued points } \\
& x=x_{0}+x_{1} t+x_{2} t^{2}+x_{3} t^{3} \\
& \bmod t^{4} \\
& y=y_{0}+y_{1} t+y_{2} t^{2}+y_{3} t^{3} \quad \bmod t^{4} \\
& z=z_{0}+z_{1} t+z_{2} t^{3}+z_{3} t^{3}
\end{aligned} \bmod t^{4} .4 .
$$

$$
\left(x_{1} t+x_{2} t^{2}+x_{3} t^{3}\right)^{4}+\left(y_{1} t+y_{2} t^{2}+y_{3} t^{3}\right)^{4}+\left(z_{1} t+z_{2} t^{3}+z_{3} t^{3}\right)^{4} \equiv 0
$$

Mustata:

$$
\operatorname{lct}(X, D)=\operatorname{dim}(X)-\sup _{r \geq 0} \frac{\operatorname{dim} J_{r}(D)}{r+1}
$$

Proof of Kolchin Irreducibility

- Step I: Deformations = Irreducibility.
- Step 2: Smooth case.
- Step 3: Reduction to Smooth Case

Step I:Deforming Arcs = Irreducibility

Arc Deformability:

X / C

Step 2: Smooth Case (Classical)

Theorem.
$X /$ C smooth, irreducible $\Longrightarrow J_{r}(X)$ irreducible

$$
J_{r}(X)
$$

x / C

Step 2: Smooth Case (Classical)

Theorem.
X / C smooth, irreducible $\Longrightarrow J_{r}(X)$ irreducible

$$
J_{r}(X)
$$

proof assuming lemma:

Step 2: Smooth Case (Classical)

Theorem.
X / C smooth, irreducible $\Longrightarrow J_{r}(X)$ irreducible
$J_{r}(X)$

proof assuming lemma:

$$
\pi_{r}^{-1}(U) \cong U \times \mathbf{A}^{(r+1) \operatorname{dim}(X)}
$$

Step 2: Smooth Case (Classical)

Theorem.
X / C smooth, irreducible $\Longrightarrow J_{r}(X)$ irreducible
$J_{r}(X)$

proof assuming lemma:

$$
\pi_{r}^{-1}(U) \cong U \times \mathbf{A}^{(r+1) \operatorname{dim}(X)}
$$

$\mathcal{O}\left(\pi_{r}^{-1}(U)\right) \cong \mathcal{O}(U)[$ variables $]$

Step 2: Smooth Case (Classical)

Theorem.
X / C smooth, irreducible $\Longrightarrow J_{r}(X)$ irreducible
$J_{r}(X)$

proof assuming lemma:

$$
\pi_{r}^{-1}(U) \cong U \times \mathbf{A}^{(r+1) \operatorname{dim}(X)}
$$

$\mathcal{O}\left(\pi_{r}^{-1}(U)\right) \cong \mathcal{O}(U)[$ variables $]$ domain

Step 3: Reduction to Smooth Case (classical)

$$
J_{\infty}(\operatorname{Sm}(X)) \subseteq J_{\infty}(X)
$$

Step 3: Reduction to Smooth Case (classical)

$$
J_{\infty}(\operatorname{Sm}(X)) \subseteq J_{\infty}(X)
$$

Step 3: Reduction to Smooth Case (classical)

$$
\overline{J_{\infty}(\operatorname{Sm}(X))} \subseteq J_{\infty}(X)
$$

Step 3: Reduction to Smooth Case (classical)

$$
\begin{gathered}
\overline{J_{\infty}(\operatorname{Sm}(X))}=J_{\infty}(X) \\
\text { irreducible }
\end{gathered}
$$

Step 3: Reduction to Smooth Case (classical)

$$
\begin{gathered}
\overline{J_{\infty}(\operatorname{Sm}(X))}=J_{\infty}(X) \\
\text { irreducible }
\end{gathered}
$$

Step 3: Reduction to Smooth Case (classical)

$$
\begin{gathered}
\overline{J_{\infty}(\operatorname{Sm}(X))}=J_{\infty}(X) \\
\text { Yirreducible }^{2}
\end{gathered}
$$

Step 3: Reduction to Smooth Case (classical) $\quad X / \mathbf{C}$

Step 3: Reduction to Smooth Case (classical)
X / C

Step 3: Reduction to Smooth Case (classical)
X / C

Step 3: Reduction to Smooth Case (classical)
X / C

Step 3: Reduction to Smooth Case (classical)
X / C

Step 3: Reduction to Smooth Case (classical)

$$
\begin{gathered}
\beta_{1} \in J_{\infty}(Y) \\
\beta_{1} \in \overline{J_{\infty}(\operatorname{Sm}(X))}=J_{\infty}(X)
\end{gathered}
$$

Recap of Classical

- Step I: Deformations = Irreducibility
- Step 2: Smooth case
- Step 3: Reduction to Smooth Case

Arithmetic Jet Spaces

1. work over $\widehat{\mathbf{Z}}_{p}^{\mathrm{ur}}$
2. replace power series with Witt vectors

$$
J_{p, r}(X)(A)=X\left(W_{p . r}(A)\right)
$$

Theorem (Buium)

$$
\widehat{X} \text { smooth and integral } \Longrightarrow \widehat{J}_{p, \infty}(\widehat{X}) \text { integral }
$$

Theorems (Dupuy-Frietag-Miller)

X smooth and affine $\Longrightarrow J_{p, \infty}(X)$ irreducible
\widehat{X} integral
$Y \rightarrow X$ (weak) affine smoothening

$$
\widehat{Y} \text { integral } \Longrightarrow J_{p, \infty}(X) \text { (weakly) irreducible }
$$

Example of a conditional result:

S1

X smooth and \widehat{X} integral $\Longrightarrow J_{p, \infty}(X)$ irreducible.

S2
$Y \rightarrow X$ (weak) smoothening
\widehat{Y} integral $\Longrightarrow J_{p, \infty}(X)$ (weakly) irreducible

$$
S 1 \quad \Longrightarrow \quad S 2
$$

Step 2: Smooth Case

Theorem. (Buium)
X / R smooth
$R=W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)$
$\widehat{J}_{p, r}(X) \rightarrow \widehat{X}$ an affine bundle

Corollary. smooth
\widehat{X} irreducible $\Longrightarrow \widehat{J}_{p, r}(X)$ irreducible

Smoothenings

Alterations?? (Introduces Ramification)

Neron Smoothenings (Sebag-Loeser,Nicaise-(ChambertLoir)):

Smoothenings

Alterations?? (Introduces Ramification)

Neron Smoothenings (Sebag-Loeser,Nicaise-(ChambertLoir)):

$$
\exists h: Y \rightarrow X
$$

- Y smooth, \widehat{Y} irreducible.
- $Y\left(W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)\right) \rightarrow X\left(W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)\right)$ surjective

THANK YOU

