Notes on Belyi’s Theorem

Taylor Dupuy

Abstract
The following note is based on a conversation I had with Zach Scherr.

Theorem 1. Let C/C be a projective curve. There exists a map p:C— P!
ramified above at most three points if and only if C' is defined over Q.

Recall that for every point @ € P(C) we have deg(p) = >_p, .o ef(P), and
that P is a branch point of f if ef(P) > 1. We say that @ is a branch value
if f(P) = @ where P is a branch point. The set of all branch values of a
morphism f will be denoted Br(f). If f : P! — P! is just a given by f € Clx]
then away from infinity the branch points are defined by f(z) — a having a zero
of multiplicity bigger than one.

Remark 1. The statement that if a curve only has these branch values then it
is defined over Q was actually proved first and the converse, that every curve
over Q has this property was actually proved later. This is interesting because
it appears the harder theorem came first.

In this note we prove that every projective curve C'/Q admits a map to P*
which is ramified at {0, 1,00}. The proof goes in three steps.

Step 1 Pick an arbitrary morphism to C' — P,

Step 2 Arrange so that the branch values are in P1(Q); this is done by com-
posing with a maps so that branch values of the previous map to zero
under the next map.

Step 3 Arrange so that the critical values are in {0, 1,00}

Step 1: pick ¢; : C — P! any morphism. The problem may be that
IBr(f1)] > 3.

Step 2: We will now send Br(p1) to P1(Q) via an inductive procedure. Set
So := Br(p1) \ {oo} and let S| = set of galois conjugates of Sy.

We construct the polynomial so that o € Sy maps to zero under this map:

for="]] @ =) € Qlal.
a€S)
Set Sy = critical values of fo C A}(C) Cc P1(C).
Since S; is galois stable that map f is galois-equivariant: Vv € Sp,Vo € Gq:
fo(v) =0and fo(y) =B = folo(v)) =0and fo(o(y)) = o(B)
We repeat this process inductively defining S; = Br(f;—1) for ¢ > 2 and letting

fir= 1] (@-a) € Q.

a€S;



Claim 1. ’ Now define
ok = fro fe—10-- 0 fio fo € Qz].

1. The number of critical values of Y2 1091 less than or equal to the number
of critical values of w2 1 © 1.

2. The number of rational critical values of w2 4101 is strictly bigger than
the number of rational critical values of 2 1, 0 1

Proof. Let (fo o 1)'(7) = 0 then fo(p1(7))@i(v) = 0. If ¢i(y) = 0 then
folp1(y)) = 0. Suppose fi(¢1(7v)) = 0. The number of such roots is strictly

one less than #S, since fi(x) has degree #Sp — 1. So fy o ¢1 has less than
or equal to the number of branch values as ¢; and at least one more rational
branch value.

Now the inductive step. Define ¢1; = fi_1 0---0 fop o 1. Suppose that
(fiow1i) (7)) = 0. Then fi(p1i(y) = 0 or ¢ ;(y) = 0. If ¢} ;(y) = 0 then
fi(p1,:(7)) = 0 by definition of f;. This shows that all previous critical values
map to zero. If f!(p1.(7)) = 0 then ¢1,:(y) is a critical point of f; and there
are less than or equal to #S5; — 1 of these.

So if deg(p1) = d the process will terminate in at most d steps. Let @2 be
the map where this terminates. And consider the map s 0 ¢ : C — P!, The
critical values of 3 0 3 C P1(Q). (Note that we can actually can assume the

branch values are in P1(Z) by clearing the denominators in our f;’s.)
O

Last Step: take these points to {0, 1,00} and 3 with critical values {0, 1, 00}

Claim 2. Let n; € Z be the critical values of o 0 p1. If w3 = @2 then the

rational function
k
g = H(az —n;)%
i=1

has the property that the branch values of g o v 0 1 are a subset of {0,1,00}
for some suitable choice of ¢; € Z.

Proof. If ¢’ /g = 0 then the formula
/
g - ci(r —ny)
g 1

We choose the ¢; so that
g A
g @—n)@—mng) (@ —m)

Choosing ¢; = Hf# (nj —n;) makes this work. It turns out that ¢’ = A[[,(xz —
n;)%~1 and hence g has no finite critical points except maybe at one of the n;.
But g(n;) = 0 or co Maybe oo is a critical point and we have

g(c0) = 0,1 or co.



