Notes on Belyi's Theorem

Taylor Dupuy

Abstract

The following note is based on a conversation I had with Zach Scherr.

Theorem 1. Let C / \mathbf{C} be a projective curve. There exists a map $\varphi: C \rightarrow \mathbf{P}^{1}$ ramified above at most three points if and only if C is defined over $\overline{\mathbf{Q}}$.

Recall that for every point $Q \in \mathbf{P}(\mathbf{C})$ we have $\operatorname{deg}(\varphi)=\sum_{P \mapsto Q} e_{f}(P)$, and that P is a branch point of f if $e_{f}(P)>1$. We say that Q is a branch value if $f(P)=Q$ where P is a branch point. The set of all branch values of a morphism f will be denoted $\operatorname{Br}(f)$. If $f: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ is just a given by $f \in \mathbf{C}[x]$ then away from infinity the branch points are defined by $f(x)-a$ having a zero of multiplicity bigger than one.

Remark 1. The statement that if a curve only has these branch values then it is defined over $\overline{\mathbf{Q}}$ was actually proved first and the converse, that every curve over $\overline{\mathbf{Q}}$ has this property was actually proved later. This is interesting because it appears the harder theorem came first.

In this note we prove that every projective curve $C / \overline{\mathbf{Q}}$ admits a map to \mathbf{P}^{1} which is ramified at $\{0,1, \infty\}$. The proof goes in three steps.

Step 1 Pick an arbitrary morphism to $C \rightarrow \mathbf{P}^{1}$.
Step 2 Arrange so that the branch values are in $\mathbf{P}^{1}(\mathbf{Q})$; this is done by composing with a maps so that branch values of the previous map to zero under the next map.

Step 3 Arrange so that the critical values are in $\{0,1, \infty\}$
Step 1: pick $\varphi_{1}: C \rightarrow \mathbf{P}^{1}$ any morphism. The problem may be that $\left|\operatorname{Br}\left(f_{1}\right)\right|>3$.

Step 2: We will now send $\operatorname{Br}\left(\varphi_{1}\right)$ to $\mathbf{P}^{1}(\mathbf{Q})$ via an inductive procedure. Set $S_{0}:=\operatorname{Br}\left(\varphi_{1}\right) \backslash\{\infty\}$ and let $S_{0}^{\prime}=$ set of galois conjugates of S_{0}.

We construct the polynomial so that $\alpha \in S_{0}$ maps to zero under this map:

$$
f_{0}:=\prod_{\alpha \in S_{0}^{\prime}}(x-\alpha) \in \mathbf{Q}[x] .
$$

Set $S_{1}=$ critical values of $f_{0} \subset \mathbf{A}^{1}(\mathbf{C}) \subset \mathbf{P}^{1}(\mathbf{C})$.
Since S_{1} is galois stable that map f_{0} is galois-equivariant: $\forall \gamma \in S_{0}, \forall \sigma \in G_{\mathbf{Q}}$:

$$
f_{0}^{\prime}(\gamma)=0 \text { and } f_{0}(\gamma)=\beta \Longrightarrow f_{0}^{\prime}(\sigma(\gamma))=0 \text { and } f_{0}(\sigma(\gamma))=\sigma(\beta)
$$

We repeat this process inductively defining $S_{i}=\operatorname{Br}\left(f_{i-1}\right)$ for $i \geq 2$ and letting

$$
f_{i}:=\prod_{\alpha \in S_{i}}(x-\alpha) \in \mathbf{Q}[x] .
$$

Claim 1. ' Now define

$$
\varphi_{2, k}=f_{k} \circ f_{k-1} \circ \cdots \circ f_{1} \circ f_{0} \in \mathbf{Q}[x]
$$

1. The number of critical values of $\varphi_{2, k+1} \circ \varphi_{1}$ less than or equal to the number of critical values of $\varphi_{2, k} \circ \varphi_{1}$.
2. The number of rational critical values of $\varphi_{2, k+1} \circ \varphi_{1}$ is strictly bigger than the number of rational critical values of $\varphi_{2, k} \circ \varphi_{1}$

Proof. Let $\left(f_{0} \circ \varphi_{1}\right)^{\prime}(\gamma)=0$ then $f_{0}^{\prime}\left(\varphi_{1}(\gamma)\right) \varphi_{1}^{\prime}(\gamma)=0$. If $\varphi_{1}^{\prime}(\gamma)=0$ then $f_{0}\left(\varphi_{1}(\gamma)\right)=0$. Suppose $f_{0}^{\prime}\left(\varphi_{1}(\gamma)\right)=0$. The number of such roots is strictly one less than $\# S_{0}$ since $f_{0}^{\prime}(x)$ has degree $\# S_{0}-1$. So $f_{0} \circ \varphi_{1}$ has less than or equal to the number of branch values as φ_{1} and at least one more rational branch value.

Now the inductive step. Define $\varphi_{1, i}=f_{i-1} \circ \cdots \circ f_{0} \circ \varphi_{1}$. Suppose that $\left.\left(f_{i} \circ \varphi_{1, i}\right)^{\prime}(\gamma)\right)=0$. Then $f_{i}^{\prime}\left(\varphi_{1, i}(\gamma)=0\right.$ or $\varphi_{1, i}^{\prime}(\gamma)=0$. If $\varphi_{1, i}^{\prime}(\gamma)=0$ then $f_{i}\left(\varphi_{1, i}(\gamma)\right)=0$ by definition of f_{i}. This shows that all previous critical values map to zero. If $f_{i}^{\prime}\left(\varphi_{1, i}(\gamma)\right)=0$ then $\varphi_{1, i}(\gamma)$ is a critical point of f_{i} and there are less than or equal to $\# S_{i}-1$ of these.

So if $\operatorname{deg}\left(\varphi_{1}\right)=d$ the process will terminate in at most d steps. Let φ_{2} be the map where this terminates. And consider the map $\varphi_{2} \circ \varphi_{1}: C \rightarrow \mathbf{P}^{1}$. The critical values of $\varphi_{2} \circ \varphi_{1} \subset \mathbf{P}^{1}(\mathbf{Q})$. (Note that we can actually can assume the branch values are in $\mathbf{P}^{1}(\mathbf{Z})$ by clearing the denominators in our f_{i} 's.)

Last Step: take these points to $\{0,1, \infty\}$ and φ_{3} with critical values $\{0,1, \infty\}$
Claim 2. Let $n_{i} \in \mathbf{Z}$ be the critical values of $\varphi_{2} \circ \varphi_{1}$. If $\varphi_{2}=\varphi_{2, k}$ then the rational function

$$
g:=\prod_{i=1}^{k}\left(x-n_{i}\right)^{c_{i}}
$$

has the property that the branch values of $g \circ \varphi_{2} \circ \varphi_{1}$ are a subset of $\{0,1, \infty\}$ for some suitable choice of $c_{i} \in \mathbf{Z}$.

Proof. If $g^{\prime} / g=0$ then the formula

$$
\frac{g^{\prime}}{g}=\sum_{i=1}^{n} c_{i}\left(x-n_{i}\right)
$$

We choose the c_{i} so that

$$
\frac{g^{\prime}}{g}=\frac{A}{\left(x-n_{1}\right)\left(x-n_{2}\right) \cdots\left(x-n_{k}\right)} .
$$

Choosing $c_{j}=\prod_{i \neq j}^{k}\left(n_{j}-n_{i}\right)$ makes this work. It turns out that $g^{\prime}=A \prod_{i}(x-$ $\left.n_{i}\right)^{c_{i}-1}$ and hence g has no finite critical points except maybe at one of the n_{i}. But $g\left(n_{i}\right)=0$ or ∞ Maybe ∞ is a critical point and we have

$$
g(\infty)=0,1 \text { or } \infty .
$$

